

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2013/2014**

COURSE NAME

FUNDAMENTAL OF HEALTH

PHYSIC

COURSE CODE

: DAU 24102

PROGRAMME

: 2 DAU

EXAMINATION DATE : DECEMBER 2013/JANUARY 2014

DURATION

: 2 ½ HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS IN

SECTION A AND TWO (2) QUESTIONS IN SECTION B

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

SECTION A

- Q1 (a) The basic requirement of health physics instrument is it's detector interacts with the radiation in such a manner that the magnitude of the instrument's response is proportional to the radiation effect or radiation property being measured.
 - (i) List three (3) health physics instruments used in the gas detection of radiation.
 - (ii) Give four (4) applications of particle-counting instruments.
 - (iii) Sketch a basic circuit of a gas-filled particle counters.

(13 marks)

(b) An alpha particle that traverses the chamber produces about 10^5 ion pairs, which corresponds to 1.6×10^{-14} C. If the chamber capacitance is 10×10^{-12} F and if all the charges are collected. Determine the voltage pulse resulting from the passage of this alpha.

(4 marks)

(c) Criticality is a chain reaction in fissile materials (which include isotopes of thorium, uranium, and plutonium) in which the splitting, or fission, of a fissile nucleus leads to the fission of at least one more fissile nucleus. Give how to determine criticality.

(8 marks)

- Q2 (a) External radiation originates in X-ray machines and other devices specifically designed to produce radiation.
 - (i) Define external radiation and internal radiation.
 - (ii) State the basic principles for protection against external radiation.
 - (iii) The exposure rate one foot from a source is 500 mR/hr. Calculate the exposure rate three feet from the source.

(11 marks)

- (b) Internal radiation exposure occurs when radio nuclides from environmental contamination enter the body. Explain
 - (i) how the internal radiation entry into the body.
 - (ii) how to control the internal radiation.

(14 marks)

SECTION B

3	(a)	State five (5) types of decay and show one examples for each type. (5 marks)
	(b)	Explain the process of
		 (i) phtoelectric effect. (ii) compton effect. (iii) pair production. (9 marks)
	(c)	A decay chain is the decay of a radioactive isotope into other radioisotope through a series alpha, beta or gamma emission. Write down a decay chain of Neptunium. Fill the blank beginning with alpha decay.
		$^{237}_{93}Np$
		α
		β
		α
		α
		α
		α
		β
		α
		$\frac{20988i}{214p_0}$
		$\frac{214}{84}Po$ a
		(11 marks)

- Q4 (a) A wooden object from an archeological site is subjected to radiocarbon dating. The activity of the sample that is due to ¹⁴C is measured to be 11.6 disintegrations per second. The activity of a carbon sample of equal mass from fresh wood is 15.2 disintegrations per second. The half-life of ¹⁴C is 5715 yr. Determine the
 - (i) rate constant, k
 - (ii) age of the archeological sample.

(8 marks)

- (b) A laboratory has 1.49 μ g of pure $^{13}_{7}Na$, which has a half-life of 10.0 min. Determine
 - (i) the number of nuclei are present initially, N_o
 - (ii) the decay constant, λ
 - (iii) the activity initially, A_o
 - (iv) the activity of the decay after 1 hour
 - (v) how long will the activity drop to less than one per second. Given Avogadro number is 6.02 x 10⁻²³ nuclei.

(17 marks)

Q5 (a) Consider two radiation fields of equal energy flux. In one case, we have a 0.1MeV photon flux of 2000 photons/cm²/s. In the second case, the photon energy is 2MeV and the flux is 100 photons/cm²/s. The energy absorption coefficients for muscle are:

$$\mu$$
 (energy, 0.1 MeV) = 0.0252 cm²/g and μ (energy, 2.0 MeV) = 0.0257 cm²/g

Calculate the dose rates for the two radiation fields.

(5 marks)

- (b) A survey meter, whose time constant is 4 seconds reads 10 mR (100 μ Sv) per hour while measuring the radiation from a dental X-ray exposure of 0.08 second. Determine the
 - (i) actual exposure rate.
 - (ii) dose to the dental hygienist if she had been at the point of measurement.

(5 marks)

(c) State the

- (i) biological radiation effects due to the non-stochastic effect
- (ii) biological radiation effects due to the stochastic effect.
- (iii) ICRP basic radiation safety criteria dose limitation to prevent stochastic and non-stochastic effect.

(15 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2013/2014 PROGRAMME : 2 DAU COURSE : FUNDAMENTAL OF HEALTH PHYSIC COURSE CODE : DAU 24102

FORMULA

SEMESTER / SESSION : SEM I / 2013/2014 PROGRAMME : 2 DAU COURSE : FUNDAMENTAL OF HEALTH PHYSIC COURSE CODE : DAU 24102

A_o	dN	Avogadro's Number, $N_A = 6.023 \times 10^{23} \text{ atoms}$			
$D = \frac{A_o}{\sqrt{2}} t_1$	$\frac{dN}{dt} = -\lambda N$	Electron Charge, $e = 1.6 \times 10^{19} \text{ C}$			
h a		Electron Mass, $m_e = 9.109 \times 10^{-31} \text{ kg}$			
$E = \frac{hc}{\lambda}$	$V = \frac{Q}{C}$	Neutron Mass, $m_n = 1.675 \times 10^{-27} \text{ kg}$			
λ λ	· C	Proton Mass, $m_p = 1.673 \times 10^{-27} \text{ kg}$			
dN	, N	Atomic Mass Number, $u = 1.6605 \times 10^{-27} \text{ kg}$			
$A = \frac{dN}{dt}$	$ln\frac{N}{N} = kt$	Atomic Mass Number, u = 931.5 MeV			
	1 1 2	Plank's Constant, $h = 6.626 \times 10^{-34} \text{ J}$			
$k = \frac{\ln 2}{T_{\frac{1}{2}}}$	$\frac{I_1}{I_2} = \frac{{d_1}^2}{{d_2}^2}$				
1 1 2	$I_2 d_2^2$	Speed of light, $c = 3 \times 10^8 \text{ ms}^{-1}$			
0		1 Curie (Ci) = 3.7×10^{10} Becquerels (Bq)			
$V = \frac{Q}{C}$	$A = A_o e^{-\lambda t}$	$1 \text{ Rad (Rad)} = 10^{-2} \text{ Grays (Gy)}$			
	_	$1 \text{ Rem (Rem)} = 10^{-2} \text{ Sieverts (Sv)}$			
$T_{1/2} = \frac{\ln 2}{\lambda}$	$N = N_o e^{-\lambda t}$	1 Roentgen (R) = $2.58 \times 10-4$			
	1.0	Coulombs/kilogram (C/kg)			
\dot{D}_t	$X = \frac{d Q}{dm}$	$1 \text{ Gy} = 100 \text{ rad} = 1 \text{ Jkg}^{-1}$			
$\dot{D}_{\rm f} = \frac{D_t}{1 - \mathrm{e}^{t/RC}} :$		$1 R = 8.77 \times 10^{-3} \text{ Grays (Gy)}$			
dN	Е	Absorbed dose, D			
$N = \frac{-\frac{dN}{dt}}{\lambda}$ $D = D_o e^{-\mu x}$	$D = \frac{E}{m}$ $D_{w} = D_{G}$	Equivalent Dose, H			
$D = D e^{-\mu x}$	$D_{-} = D_{C}$	Effective Dose, E			
$D = D_0 c$	D _W D _G	Exposure, X			
H(Sv) = D(Gy)Weight	NaE	Radiation = R			
$H_T(Sv) = \sum_R W_R D$	$D_w = \frac{N_g E}{m}$	Tissue = T			
$E(Sv) = \sum_{T} W_{T} H_{T}$	111				
		Charge, Q			
$H = H_1 + H_2$		Number of ionized, N _g			
	photons Mal	Dose to the wall, $D_w = Dose$ to the gas, D_G			
$\phi \frac{\text{photons}}{\text{cm}^2/\text{s}} \times E \frac{\text{MeV}}{\text{photon}} \times 1.6 \times 10^{-13} \frac{\text{J}}{\text{MeV}} \times \mu \text{ (energy)} \frac{\text{cm}^2}{\text{g}}$					
$\dot{D} = \frac{\text{cm}^2/\text{s}}{10^{-3} \text{ J/g}} \frac{\text{MeV}}{\text{J/g}}$					
10 3 <u>G G G </u>					
$\overset{\bullet}{D}$ = dose rate					
$\varphi = \text{fluence rate (cm}^2 \text{ s}^{-1})$					
$\dot{D} = \frac{\dot{\varphi} A(-dE/dx) \Delta x}{QA\Delta x} = \dot{\varphi} \left(-\frac{dE}{Qdx}\right)$					
$D = \frac{1}{\rho A \Delta x} = \psi \left(\frac{1}{\rho dx} \right)$ A = area					
D = Dose rate					
$\dot{\Psi}$ = energy fluence rate (MeV/cm ² sec) C = activity (Bq)					
$D = \Psi \frac{\mu_{en}}{\mu_{en}} = \frac{CE \mu_{en}}{\mu_{en}}$ $E = \text{energy per decay (MeV)}$ $\mu_{en}/\rho = \text{mass energy-absorption coefficient of air (cm2g-1)}$					
$D = \frac{1}{\rho} = \frac{1}{4\pi r^2} \frac{1}{\rho}$ (~ same for photons between ~60keV and 2MeV)					
(μ_{ee}/ρ) = mass energy absorption coefficient (cm ² /g) N = photon fluence (photons/cm ²)					
F = energy per photon					
$Dose = \frac{\left(\frac{\mu_{en}}{\rho}\right)(N)(E)(\rho x)(A)}{(A)(\rho x)} = \left(\frac{\mu_{en}}{\rho}\right)(A)(\rho x)$	$\rho = \text{density}$ x = thickness				
$(A)(\rho x) \qquad (\rho)^{(A)}(A^{(A)}) \qquad A = \text{area}$					