

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLE I

COURSE CODE

: DAR 11003

PROGRAMME : 1 DAR

EXAMINATION DATE : DECEMBER 2013/JANUARY 2014

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE(5) QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

DAR 11003

Q1	For the	e circuit of Figure Q1:	
	(a)	Determine the resistance R_T .	(5 marks)
	(b)	Find the currents I_1 and I_2 .	(10 marks)
	(c)	Find the voltage V_a .	(5 marks)
Q2	(a)	Write the mesh equation for the circuit in Figure Q2(a). Using determinant the loop currents. Use clockwise mesh currents.	ts, solve for
			(10 marks)
	(b)	Write the nodal equation for the circuit in Figure Q2(b). Using determinanthe nodal voltages V_1 and V_2 .	ts, solve for
			(10 marks)
Q3	(a)	Find the Thévenin equivalent circuit for the network external to the resista Figure Q3(a).	or R in
			(10 marks)
	(b)	Find the Norton equivalent circuit for the network external to the resistor Q3(b).	R in Figure
			(10 marks)

DAR 11003

Q4	For th	ne circuit of Figure Q4:		
	(a)	Write the mathematical expression for the voltages v_C and v_{RI} and the currafter the switch is thrown into position 1.	rent i_C	
			(8 marks)	
	(b)	Find the values v_C , v_{RI} and the current i_C when the switch is moved to post=100ms.	ition 2 at	
			(6 marks)	
	(c)	Write the mathematical expression for the voltages v_C and v_{R2} and the current if the switch is moved into position 3 at t=200 ms.	$rent i_C$	
			(6 marks)	
,				
Q5	For the circuit of Figure Q5:			
	(a)	Write the mathematical expressions for the current i_L and the voltage v_L for the closing of the switch. Note the magnitude and direction of the initial cu		
			(10 marks)	
	(b)	Sketch the waveform of i_L and v_L for the entire period from initial value to state level.	steady-	
		state level.	(10 marks)	
Q6	For the oscilloscope display of of Figure Q6:			
	(a)	Determine the period of each waveform.	(5 marks)	
	(b)	Determine the frequency of each waveform.	(5 marks)	
	(c)	Find the rms value of each waveform.	(5 marks)	
	(d)	d) Determine the phase shift between the two waveforms and which leads or lags.		
			(5 marks)	

Q7 (a) Find the sinusoidal expression for the applied voltage e_{in} for the system of Figure Q7(a) if

$$V_a = 60 \sin(\omega t + 30^\circ)$$

 $V_b = 30 \sin(\omega t + 60^\circ)$
 $V_c = 40 \sin(\omega t + 120^\circ)$

(10 marks)

(b) Find the sinusoidal expression for the current i_s for the system of Figure Q7(b) if

$$i_1 = 6 \times 10^{-3} \sin (377t + 180^\circ)$$

 $i_2 = 8 \times 10^{-3} \sin (377t - 180^\circ)$
 $i_3 = 2i_2$

(10 marks)

END OF QUESTION

SEMESTER / SESSION : SEM I / 2013/2014 COURSE : ELECTRICAL PRINCIPLE I PROGRAMME : 1 DAR COURSE CODE : DAR 11003

 $E \xrightarrow{I_{s}} I_{1} \qquad \qquad I_{2}$ $R_{3} \gtrsim 10 \Omega$ $R_{2} \gtrsim 15 \Omega \qquad V_{a}$ $R_{4} \gtrsim 2 \Omega$

FIGURE Q1

FIGURE Q2(a)

FIGURE Q2(b)

SEMESTER / SESSION : SEM I / 2013/2014 COURSE : ELECTRICAL PRINCIPLE I PROGRAMME : 1 DAR COURSE CODE : DAR 11003

FIGURE Q3(a)

FIGURE Q3(b)

SEMESTER / SESSION : SEM I / 2013/2014 COURSE : ELECTRICAL PRINCIPLE I PROGRAMME : 1 DAR COURSE CODE : DAR 11003

FIGURE Q5

Vertical sensitivity = 0.5 V/div. Horizontal sensitivity = 1 ms/div.

FIGURE Q6

SEMESTER / SESSION : SEM I / 2013/2014 COURSE : ELECTRICAL PRINCIPLE I PROGRAMME : 1 DAR COURSE CODE : DAR 11003

FIGURE Q7(a)

FIGURE Q7(b)