

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# FINAL EXAMINATION SEMESTER II SESSION 2009/2010

SUBJECT NAME

TOTAL QUALITY

**MANAGEMENT** 

SUBJECT CODE

BPB 2083

COURSE

2 BPA / 2 BPB

**EXAMINATION DATE** 

APRIL / MAY 2010

**DURATION** 

2 HOURS 30 MINUTES

INSTRUCTION

PART A

ANSWER ALL QUESTIONS

PART B

ANSWER TWO (2)

QUESTIONS ONLY OUT OF FOUR (4) QUESTIONS

THIS QUESTION PAPER CONSISTS OF 7 PAGES

#### PARΓA (50 marks)

Q1 As a quality officer at HIJ Fertilizer Sdn. Bhd., you have collected filling process data for bags of nitrogen fertilizer in your factory to determine the state of its quality control. The data were collected in subgroup sizes of 6. Table Q1 shows the average and range of the fertilizer bags in kilogram.

Table Q1: Average and range of fertilizer bags (kilogram)

| Sample | x-bar | R    | Sample | x-bar | R    |
|--------|-------|------|--------|-------|------|
| 1      | 20.35 | 0.34 | 14     | 20.41 | 0.36 |
| 2      | 20.40 | 0.36 | 15     | 20.45 | 0.34 |
| 3      | 20.36 | 0.32 | 16     | 20.34 | 0.36 |
| 4      | 20.65 | 0.36 | 17     | 20.36 | 0.37 |
| 5      | 20.20 | 0.36 | 18     | 20.42 | 0.73 |
| 6      | 20.40 | 0.35 | 19     | 20.50 | 0.38 |
| 7      | 20.43 | 0.31 | 20     | 20.31 | 0.35 |
| 8      | 20.37 | 0.34 | 21     | 20.39 | 0.38 |
| 9      | 20.48 | 0.30 | 22     | 20.39 | 0.33 |
| 10     | 20.42 | 0.37 | 23     | 20.40 | 0.32 |
| 11     | 20.39 | 0.29 | 24     | 20.41 | 0.34 |
| 12     | 20.38 | 0.30 | 25     | 20.40 | 0.30 |
| 13     | 20.40 | 0.33 |        |       |      |

<sup>\*</sup> Note: Round all calculations to two decimal points

(a) Calculate the trial central line and control limits.

(7 marks)

- (b) Calculate revised central line and control limits with the assumption that causes of defects are assignable if any points in Q1(a) are out of control.

  (8 marks)
- (c) Develop the revised x-bar and R charts.

(5 marks)

(d) Evaluate the state of quality control in filling bags of fertilizers in Q1(a) and Q1(b) by referring to the points which are outside of the control limits.

(5 marks)

#### BPB 2083

Q2 Global competition and economic liberalization are creating opportunities for Malaysian organizations. They use quality to compete with other organizations to improve their market share. Total Quality Management (TQM) is one of the important quality techniques which many firms are using to succeed. In addition, it has been widely implemented throughout the world across different industries and sectors.

The implementation of TQM has given positive result but some organizations find it difficult to implement it in a satisfactory and efficient way. They also noticed some barriers or obstacles which hinder the implementation of TQM.

Discuss SIX (6) barriers to TQM implementation that prevent organizations from achieving the benefits expected from it.

(25 marks)

#### PART B (50 marks)

Q3 The variation concept is the law of nature in that no two natural items in any categories are the same. Variation is present in every manufacturing process due to a combination of equipment, materials, environment, and operator.

Discuss FOUR (4) sources of variation in manufacturing process with an example for each source.

(25 marks)

Q4 Sunway Lagoon Sdn. Bhd. wants to maintain the pH value for swimming pool water of its theme park. One reading is taken each day for 20 days as shown in Table Q4.

Table Q4: pH value of swimming pool water

| Sampel | pH   | Sampel | pH   |
|--------|------|--------|------|
| 1      | 4.56 | 11     | 4.58 |
| 2      | 4.65 | 12     | 4.71 |
| 3      | 4.66 | 13     | 4.61 |
| 4      | 4.34 | 14     | 4.66 |
| 5      | 4.65 | 15     | 4.46 |
| 6      | 4.40 | 16     | 4.70 |
| 7      | 4.50 | 17     | 4.65 |
| 8      | 4.55 | 18     | 4.61 |
| 9      | 4.69 | 19     | 4.54 |
| 10     | 4.29 | 20     | 4.55 |

\*Note: Round all calculations to three decimal points.

(a) Calculate the central line and control limits using moving average and moving range method with n = 3.

(10 marks)

(b) Calculate the central line and control limits for a period of 4 using the same method in Q4(a).

(10 marks)

(c) Explain the differences between the trial central line and control limits of the water pH value in Q4(a) and Q4(b).

(5 marks)

Q5 A p chart is used in quality control to report the fraction or percent of nonconforming in a product, quality characteristic, or group of quality characteristics. Table Q5 shows the data for the payment of insurance claims.

Table Q5: Number of conformance of insurance claims payment

| Sampal | Number of | Number of<br>Nonconforming |  |  |
|--------|-----------|----------------------------|--|--|
| Sampel | Inspected |                            |  |  |
| 1      | 1750      | 47                         |  |  |
| 2      | 1750      | 42                         |  |  |
| 3      | 1750      | 48                         |  |  |
| 4      | 1750      | 58                         |  |  |
| 5      | 1750      | 32                         |  |  |
| 6      | 1750      | 38                         |  |  |
| 7      | 1750      | 53                         |  |  |
| 8      | 1750      | 68                         |  |  |
| 9      | 1750      | 45                         |  |  |
| 10     | 1750      | 37                         |  |  |
| 11     | 1750      | 57                         |  |  |
| 12     | 1750      | 38                         |  |  |
| 13     | 1750      | 53                         |  |  |
| 14     | 1750      | 37                         |  |  |
| 15     | 1750      | 39                         |  |  |
| 16     | 1750      | 51                         |  |  |
| 17     | 1750      | 44                         |  |  |
| 18     | 1750      | 61                         |  |  |
| 19     | 1750      | 48                         |  |  |
| 20     | 1750      | 56                         |  |  |
| 21     | 1750      | 48                         |  |  |
| 22     | 1750      | 40                         |  |  |
| 23     | 1750      | 47                         |  |  |
| 24     | 1750      | 25                         |  |  |
| 25     | 1750      | 35                         |  |  |
|        |           |                            |  |  |

<sup>\*</sup>Note: Round all calculations to four decimal points.

#### Using the data:

(a) Calculate the trial central line and control limits for a p chart.

(10 marks)

(b) Plot the trial central line and control limits values for a p chart on graph paper.

(5 marks)

(c) Calculate the revised central line and control limits if there are any out-of-control points in Q5(b) with the assumption that causes of defects are assignable.

(10 marks)

Q6 The ZZ-400 manufacturing team used an affinity diagram to organize its list of potential performance indicators of its operations. Because the team works a shift schedule and members could not meet to do the affinity diagram together, they modified the procedure. They wrote each idea on a sticky note and put all the notes randomly on a rarely used door. Table Q6 shows the list that the team members brainstormed.

Table Q6: List of potential performance indicators

| Possible Performance Measures |                             |  |  |
|-------------------------------|-----------------------------|--|--|
| % purity                      | # of OSHA recordable        |  |  |
| % trace metals                | # of customer returns       |  |  |
| Maintenance costs             | Customer complaints         |  |  |
| # of emergency jobs           | Overtime/total hours worked |  |  |
| Ibs. Produced                 | \$/Ib. produced             |  |  |
| Environmental accidents       | Raw material utilization    |  |  |
| Material costs                | Yield                       |  |  |
| Overtime costs                | Utility cost                |  |  |
| # of pum scal failures        | ppm water                   |  |  |
| Viscosity                     | Color                       |  |  |
| Cp <sub>k</sub> values        | Service factor              |  |  |
| Safety                        | Time between turnarounds    |  |  |
| Days since last lost-time     | Hours worked/employee       |  |  |
| % rework or reject            | Ibs. Waste                  |  |  |
| Hours downtime                | Housekeeping score          |  |  |
| % uptime                      | % capacity field            |  |  |

As the quality manager of the ZZ-400, you have reviewed and organized the notes into five major groups (product quality, maintenance, manufacturing cost, safety and environmental, and volume).

Develop an affinity diagram for each group.

(25 marks)

#### BPB 2083

#### Appendix i

#### FINAL EXAMINATION

SEMESTER/SESSION : SEMESTER II/09/10 SUBJECT : TOTAL QUALITY MANAGEMENT

COURSE: 2 BPA/ 2 BPB SUBJECT CODE: BPB2083

### Factors for Computing Central Lines and 3<sup>o</sup> Control Limits for Variable Charts

| Sample<br>Size | CHART FOR<br>AVERAGES |       | CHART FOR STANDARD DEVIATIONS |                            |       |  |
|----------------|-----------------------|-------|-------------------------------|----------------------------|-------|--|
|                | Factors for Control   |       | Factor for Central            | Factors for Control Limits |       |  |
|                | Li                    | mits  | Line                          |                            |       |  |
| n              | $A_2$                 | $A_3$ | $C_4$                         | $B_3$                      | $B_J$ |  |
| 2              | 1.880                 | 2.659 | 0.7979                        | 0                          | 3.267 |  |
| 3              | 1.023                 | 1.954 | 0.8862                        | 0                          | 2.568 |  |
| 4              | 0.729                 | 1.628 | 0.9213                        | 0                          | 2.266 |  |
| 5              | 0.577                 | 1.427 | 0.9400                        | 0                          | 2.089 |  |
| 6              | 0.483                 | 1.287 | 0.9515                        | 0.030                      | 1.970 |  |
| 7              | 0.419                 | 1.182 | 0.9594                        | 0.118                      | 1.882 |  |
| 8              | 0.373                 | 1.099 | 0.9650                        | 0.185                      | 1.815 |  |

|                |                            | CHAR                                         | T FOR RAI | NGES  |       |                      |
|----------------|----------------------------|----------------------------------------------|-----------|-------|-------|----------------------|
|                | CHAR                       | CHART FOR AVERAGES T FOR STANDARD DEVIATIONS |           |       |       | Chart for<br>Medians |
| Sample<br>Size | Factor for<br>Central Line | Factors for Control Limits                   |           |       |       |                      |
| n              | $d_2$                      | $D_3$                                        | $D_4$     | $D_5$ | $D_6$ | 15                   |
| 2              | 1.128                      | 0                                            | 3.267     | 0     | 3.865 | 2.224                |
| 3              | 1.693                      | 0                                            | 2.574     | 0     | 2.745 | 1.265                |
| 4              | 2.059                      | 0                                            | 2.282     | 0     | 2.375 | 0.829                |
| 5              | 2.326                      | 0                                            | 2.114     | 0     | 2.179 | 1.712                |
| 6              | 2.534                      | 0                                            | 2.004     | 0     | 2.055 | 0.562                |
| 7              | 2.704                      | 0.076                                        | 1.924     | 0.078 | 1.967 | 0.520                |
| 8              | 2.847                      | 0.136                                        | 1.864     | 0.139 | 1.901 | 0.441                |