

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2013/2014**

COURSE NAME

: TECHNICAL MATHEMATICS II

COURSE CODE

: DAS 11103

PROGRAMME

: 1 DAB /1 DAJ /1 DAR / 1 DAK

EXAMINATION DATE : JUNE 2014

DURATION

: 3 HOURS

INSTRUCTION

: A) ANSWER ALL QUESTIONS IN

PART A

B) ANSWER THREE (3) QUESTIONS IN PART B

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

PART A

Q1 (a) Determine whether the following integration is improper or proper integral. Give your reason.

$$\int_{1}^{\infty} \frac{3}{x^2 - 1} \, dx$$

(3 marks)

(b) Evaluate the following integral by using substitution

$$\int_{0}^{1} \frac{2x+5}{(x^2+5x+3)^3} \ dx$$

(10 marks)

(c) Evaluate

$$\int x^2 \ln x \ dx$$

by using integration by parts

(7 marks)

Q2 (a) Solve the following integral by using Trapezoidal's rule, using h = 0.125. Write the answer to 3 decimal places

$$\int_{0}^{1} \sqrt{\frac{x}{1+x}} dx$$

(9 marks)

(b) Determine the area of the region bounded by the curve and line

$$y = 2 + x - x^2$$
, $y + x + 1 = 0$ (11 marks)

PART B

- Q3 (a) Sketch the graph and determine the domain and range.
 - (i) $y = x^3 + x + 7$

(3 marks)

(ii) $y = -\frac{1}{(x+5)}$

(3 marks)

(iii) $y = e^{2x}$

(3 marks)

(iv) $y = -\sqrt{x-5}$

(3 marks)

- (b) Given $f(x) = \sqrt{x-5} + 3$, $g(x) = \frac{2x^2}{3}$ and h(x) = 2x 1. Calculate
 - (i) $f \circ g$

(3 marks)

(ii) f^{-1}

(2 marks)

(iii) $f \circ g \circ h^{-1}$

(3 marks)

- Q4 (a) Compute the following limits.
 - (i) $\lim_{x \to 0} \frac{e^{2x} + e^x 2}{e^x 1}$

(4 marks)

(ii) $\lim_{x \to 1} \frac{x-1}{\sqrt{x}-1}$

(4 marks)

DAS 11103

(iii)
$$\lim_{x\to 3} \frac{x-3}{x^2-7x+12}$$

(4 marks)

(iv)
$$\lim_{x \to \infty} \frac{\sqrt{3x^4 + x}}{x^2 - 8}$$

(4 marks)

(b) Given:
$$f(x) = \begin{cases} x^2 - 1, & x < 3 \\ 2ax, & x \ge 3 \end{cases}$$
.

Find a, so that f(x) continuous at every value of x.

(4 marks)

Q5 (a) Find $\frac{dy}{dx}$ of the following:

(i)
$$y = \left(\frac{x-5}{2x+1}\right)^3.$$

(5 marks)

(ii)
$$xy = x + \cos y$$

(5 marks)

(b) Given
$$x = t^3 - 8t$$
 and $y = 5 - t^4$. Calculate $\frac{dy}{dx}$ when $t = 2$.

(5 marks)

(c) If
$$y = Ax + Bx^2$$
, where A and B are constants, show that

$$x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$$

(5 marks)

- Q6 (a) Using L'Hôspital's Rule, find
 - (i) $\lim_{x \to 0} \frac{x \sin x}{x^2}$
 - (ii) $\lim_{x \to \infty} \frac{x 8x^2}{12x^2 + 5x}$

(6 marks)

- (b) A boat travels with a variable speed. Its displacement at any time t is given by $s = 2t^3 8t^2 + 8t.$
 - (i) Find t if the displacement is maximum and determine its displacement at that point.

(10 marks)

- (ii) Find t if the velocity is minimum and determine its velocity at that point. (4 marks)
- Q7 (a) From Figure Q7 (a), find the area of the region enclosed by the curve

$$y^2 = 4x$$
 and $y = 2x - 4$.

(7 marks)

(b) Use cylindrical shells to find the volume of the solid that results when the region enclosed by $y^2 = 4x$, y = 2 and x = 4 is revolved about the y – axis. Refer from Figure Q7 (b).

(6 marks)

(c) Find the arc length of the curve $y = \frac{1}{3}(x^2 + 2)^{3/2}$ from x = 0 to x = 3.

(7 marks)

- END OF QUESTION-

FINAL EXAMINATION

SEMESTER/SESSION: SEM 2 / 2013/2014

PROGRAMME: 1DAB/1DAJ/1DAR/1DAK

COURSE: TECHNICAL MATHEMATICS II COURSE CODE: DAS 11103

Figure Q7 (a)

Figure Q7 (b)

FINAL EXAMINATION

SEMESTER/SESSION: SEM 2 / 2013/2014

PROGRAMME: 1DAB/1DAJ/1DAR/1DAK

COURSE: TECHNICAL MATHEMATICS II

COURSE CODE: DAS 11103

FORMULAE

Differentiation

$$\frac{d}{dx}(ax^n) = nax^{n-1}$$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$d(1) \qquad 1 \quad du$$

$$\frac{d}{dx} \left(\frac{1}{\sqrt{u}} \right) = \frac{1}{2\sqrt{u}} \frac{du}{dx}$$

$$\frac{d}{dx}(e^u) = e^u \frac{du}{dx}$$

$$\frac{d}{dx}(\ln u) = \frac{1}{u}\frac{du}{dx}$$

$$\frac{d}{dx}(ku) = k\frac{du}{dx}$$

Basic Integration

$$\int k \, dx = kx + C$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$
$$A = \int_{a}^{d} [u(y) - v(y)] dy$$

$$A = \int_{c}^{d} [u(y) - v(y)] dy$$

$$\frac{d}{dx}(\sin u) = \cos u \frac{du}{dx}$$

$$\frac{d}{dx}(\cos u) = -\sin u \frac{du}{dx}$$

$$\frac{d}{dx}(\tan u) = \sec^2 u \frac{du}{dx}$$

$$\frac{d}{dx}(\sec u) = \sec u \cdot \tan u \frac{du}{dx}$$

$$\frac{d}{dx}(uv) = uv' + vu'$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2}$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Trapezoidal Rule

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2}[f(a) + f(b) + 2\sum_{i=1}^{n-1} f(a+ih)]$$

Volume

$$V = 2\pi \int_{a}^{b} x f(x) dx$$

Arch Length

$$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$