

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2013/2014**

COURSE NAME

: PHYSICS 1

COURSE CODE : DAS 14103

PROGRAMME : DAA, DAE, DAM, DAU

EXAMINATION DATE : JUNE 2014

DURATION

: 2 ½ HOURS

INSTRUCTION

: **SECTION A ANSWER ALL**

QUESTIONS

SECTION B ANSWER TWO (2)

QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

State the defination of power.

SECTION A

(a)

 $\mathbf{Q}\mathbf{1}$

		(2 marks)
	(b)	Determine the SI units for power and its dimensions. (4 marks)
	(c)	Figure Q1(c) shows a 50kg block is pushed slowly up an incline. The coefficient of friction between the block and the plane is 0.2.
		(i) Calculate the work done in moving the block up the plane a distance of 4m.
		(8 marks)
		(ii) Describe what happened if the force F is removed. (1 marks)
		(iii) Determine its speed be when it reaches its original position after force F is removed.
		(10 marks)
Q2	A ston	e is swinging in a horizontal circle of 0.8m in diameter, at 30rev/min.
	(i)	Identify the angular frequency of the motion of the stone. (4 marks)
	(ii)	Interpret the amplitude of the motion of the stone. (2 marks)
	(iii)	Determine the frequency of the motion of the stone. (4 marks)
	(iv)	Interpret the period of the motion of the stone. (2 marks)
	(v)	Distinguish the maximum acceleration at a turning point of the motion. (6 marks)
	(vi)	Distinguish the speed of the stone at a turning point of the motion. (2 marks)
	(vii)	Distinguish the maximum acceleration at equilibrium position. (2 marks)

(5 marks)

(viii) Distinguish the speed of the stone at equilibrium position.

SECT	ION B			
Q3	(a)	Define	e the following term:	
		(i)	Angular acceleration.	(2 marks)
		(ii)	Tangential acceleration.	(2 marks)
		(iii)	Centripetal acceleration.	(2 marks)
	(b)	Derive	e the relationship of the tangential and centripetal acceler	ations. (3 marks)
	(c)		m radius roulette wheel initially turning at 3rev/s then mly and finally stop after turning 26revolutions.	slow down
		Detern	nine the following:	
		(i)	time taken for the wheel to stop.	(4 marks)
		(ii)	Angular acceleration of the wheel.	
		(iii)	Initial tangential speed of the wheel.	(4 marks)
		(iv)	Initial centripetal acceleration of the wheel.	(4 marks)
				(4 marks)
Q4	(a)	the blo	g block rests on a smooth frictionless table. A string is ock passes over a frictionless pulley, and a 3kg mass har ock to move downward from the string.	
		(i)	Sketch and label the free body diagram to show above s	ituation.
				(4 marks)

		(ii)	Determine the acceleration of the dynamic string.	
		(iii)	Determine the tension T in the string.	(5 marks)
				(5 marks)
	(b)	_	e Q4 (b) shown a projectile is fired with a horizontal /s from the top of a cliff 80m high.	velocity of
		(i)	Determine time taken for the projectile to strike the level the base of the cliff.	el ground at
		(ii)	Determine the range will it strike.	(4 marks)
				(2 marks)
		(iii)	Determine the velocity will it strike.	
				(5 marks)
Q5	(a)	Differ	rentiate between the vector and the scalar quantities.	(3 marks)
	(b)	List th	hree (3) types of following quantities involved in dynami	c motion:
		(i)	Vector quantities.	(1.5marks)
		(ii)	Scalar quantities.	
				(1.5marks)
	(c)		e coplanar forces acted at y-x axis graph. The forces are at 30° and $400\mathrm{N}$ at 150°	300N at 0°,
		(i)	Plot and label these coplanar forces at y-x axis graph.	(3 marks)
		(ii)	Determine the resultant force acted by coplanar forces.	(13marks)
		(iii)	Determine the direction acted by coplanar forces.	(3 marks)

Q6

A sphere with it radius is 400mm is float in density of oil 0.78g/cm ³ under gravity.		
(i)	Determine the volume of the sphere in mili-meter per cubic.	
		(3 marks)
(ii)	Express the volume of the sphere in scientific notation.	
		(1 marks)
(iii)	Convert the volume of the sphere in SI unit.	
		(5 marks)
(iv)	State the dimension of the volume of the sphere.	(0 1)
		(2 marks)
(v)	Convert the density of oil in SI unit.	(5 montra)
(.*)	Determine the large constant of the subsection	(5 marks)
(vi)	Determine the buoyancy force of the sphere.	(5 marks)
(vii)	Express the buoyancy force of the sphere in SI unit.	(5 marks)
(*11)	Express the ode funey force of the sphere in st diff.	(1 marks)
(viii)	State the dimension for the buoyancy force.	
		(3 marks)

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2013/2014 COURSE NAME : PHYSICS 1 PROGRAMME: DAA, DAE, DAM, DAU

COURSE CODE: DAS 14103

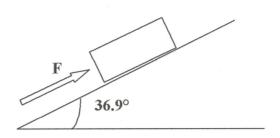


FIGURE Q1(c)

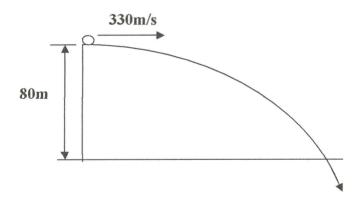


FIGURE Q4 (b)

FORMULA				
SEMESTER/SESSION: SEM II COURSE NAME : PHYS		PROGRAMME: DAA, DAE, DAM, DAU COURSE CODE: DAS 14103		
Gravity acceleration, g= 9.81m/s ²	$s = r \theta$	$s = ut + \frac{1}{2} at^2$		
$P = F_V$	$GO = d \theta / dt$	v = u + at		
F = ma	$\alpha = d GO / dt$	s = vt		
W = mg	V = L	$v^2 = u^2 + 2as$		
$\mathbf{w} = \mathbf{F} \mathbf{s}$	a= r α	$R_x = R \cos\theta$		
f=μ N	$a_c = v^2 / r$ $= GO^2 / r$	$R_y = R \sin\theta$		
$KE = \frac{1}{2} \text{ mv}^2$	$a \text{ net} = (\sqrt{a^2 + a_c}^2)$	$R = (\sqrt{R_x^2 + R_y^2})$		
$\frac{1}{2} \text{ mv}_1^2 - \frac{1}{2} \text{ mv}_2^2$ = -(mgh ₁ - mgh ₂)	$f = 1 / T$ $= GO / 2\pi$	$\theta = \tan^{-1}\left(R_{y} / R_{x}\right)$		
U = mgh	$a \max = GO^2 A$	$GO = GOo + \alpha t$		
$\theta = 600 t + \frac{1}{2} \alpha t^2$	Fb = ρg V	$V_{\text{sphere}} = 4/3 \pi r^3$		