

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2019/2020

COURSE NAME

: MATHEMATICS 1

COURSE CODE

: BBP 10603

PROGRAMME CODE

: BBA/BBB/BBD/BBE/BBF/BBG

EXAMINATION DATE

: DECEMBER 2019 / JANUARY 2020

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

TERBUKA

- Q1 (a) Given points A(1,-5) and B(2,-2) lie on a cartesian plane.
 - (i) If a straight line is drawn between points A and B, what is the slope of the line?

[2 marks]

(ii) Calculate the distance from points A and B.

[2 marks]

- (b) The coordinates of P, Q and R are given as (2,7), (-4,3) and (8,-2) respectively.
 - (i) Show that line PQ is perpendicular to line PR.

[3 marks]

(ii) Find the linear equation of line PQ.

[2 marks]

(c) A line WX is parallel to YZ. Given that the points on line YZ are Y(-3,5) and Z(6,-1) respectively. Find the equation of line WX that passess through point K(3,-4).

[5 marks]

- (d) Given that Ahmad's salary is RM15 per hour and he works for 8 hours daily.
 - (i) By letting x = working hours and y = salary, write a linear equation to represent the above situation in (d) in terms of y = mx + c

[3 marks]

(ii) If he earns a RM5 bonus on Monday & Tuesday, how much Ahmad earns weekly if he works 5 days a week?

[3 marks]

Q2 (a) Find the roots of $2x^2 = -x + 3$ by using factorization method.

[3 marks]

- (b) Solve the following equations using quadratic formula method:
 - (i) x(3x+6)=2

[4 marks]

(ii)
$$\frac{2}{x} + \frac{3}{x+2} = 1$$

[4 marks]

(c) Sketch the graph of $y = x^2 + 3x - 10$.

TERBUKA [5 marks]

(d) **DIAGRAM Q2(d)** shows a rectangular shape where the shaded area is about to be cut out. If the remaining area of the larger area is $35m^2$, find the value of k.

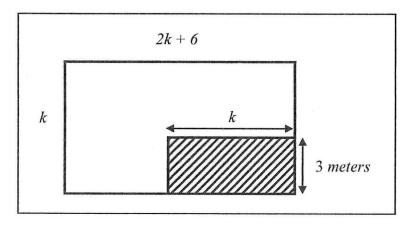


DIAGRAM Q2(d)

[4 marks]

- Q3 (a) Solve the following inequalities:
 - (i) $-5 < 3 4x \le 23$
 - (ii) |3x-5| < 7

[4 marks]

(b) Decompose $\frac{x^2 + 5x - 12}{(x+1)(x-3)^2}$ into partial fraction.

[6 marks]

- (c) Given that $\tan \theta = \frac{1}{2}$ and $\cos \alpha = \frac{1}{\sqrt{2}}$. Without using calculator, find the value of:
 - (i) $\csc\theta$
 - (ii) $\sec \theta$
 - (iii) $\cot \alpha$

[6 marks]

(d) Prove that $\frac{\cot x}{\csc x} = \cos x$

[4 marks]

TERBUKA

Q4 (a) Find the inverse matrix $A = \begin{bmatrix} -5 & 4 \\ 4 & -3 \end{bmatrix}$

[4 marks]

(b) By using Cramer's rule, solve the following system of linear equation:

$$3x + 8y - z = -18$$

$$2x + y + 5z = 8$$

$$2x + 4y + 2z = -4$$

[6 marks]

- (c) Simplify the following expression:
 - (i) (2-3i)(3+i)
 - (ii) $(-5+2i)^2$

[4 marks]

(d) Solve $z = \frac{1+2i}{3+1}$. Hence, express your answer in Polar Form.

[6 marks]

- **Q5** (a) Given the vectors $\mathbf{u} = \langle 2, -6, 3 \rangle$ and $\mathbf{v} = \langle 2, -1, 2 \rangle$. Find:
 - (i) $\mathbf{u} \cdot \mathbf{v}$
 - (ii) $\mathbf{u} \times \mathbf{v}$
 - (iii) the angle between u and v

[6 marks]

- (b) Given the vectors $\mathbf{r} = 3\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}$ and $\mathbf{s} = 4\mathbf{i} 3\mathbf{j} 5\mathbf{k}$. Find:
 - $|\mathbf{r}| + |\mathbf{s}|$

[2 marks]

(ii) $2|\mathbf{r}| - |-3\mathbf{s}|$

[3 marks]

(iii) $|3\mathbf{r}-2\mathbf{s}|$

TERBUKA [3

[3 marks]

CONFIDENTIAL

BBP 10603

- (c) Given the vectors $\mathbf{a} = \mathbf{i} + 2\mathbf{j} \mathbf{k}$, $\mathbf{b} = 2\mathbf{i} 3\mathbf{j} + 5\mathbf{k}$ and $\mathbf{c} = -\mathbf{i} + 3\mathbf{j} 2\mathbf{k}$. Find the value of:
 - (i) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$
 - (ii) $(\mathbf{b} \times \mathbf{c}) \mathbf{a} + 2\mathbf{b}$

[6 marks]

-END OF QUESTIONS-

CONFIDENTIAL

BBP 10603

FINAL EXAMINATION FORMULA

SEMESTER/SESSION: SEM I 2019/2020

PROGRAM CODE: BBA/BBB/BBD/BBE/BBF/BBG

COURSE NAME

: MATHEMATICS 1

COURSE CODE : BBP 10603

Linear equations:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$(x, y) = (x_1 + x_2, y_1 + y_2)$$

$$m = \frac{y_2 - y_1}{x_2 - x_1}, x_2 \neq x_1$$

$$y = mx + c$$

$$y-y_1=m(x-x_1)$$

Quadratic equation:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Trigonometry:

$$\sin^2\theta + \cos^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\cot^2\theta + 1 = \csc^2\theta$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$a^2 + b^2 = c^2$$

Solution of Systems of linear:

$$A_{ij} = (-1)^{i+j} M_{ij}$$

$$x_1 = \frac{|D_{x1}|}{|D|}, x_2 = \frac{|D_{x2}|}{|D|}, x_3 = \frac{|D_{x3}|}{|D|}$$

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

 $cos(\alpha \pm \beta) = cos \alpha cos \beta \mp sin \alpha sin \beta$

 $\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} AA^{-1} = A^{-1}A = I$

 $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$

Complex Numbers:

$$i^2 = -1$$
$$z = re^{i(\theta + 2k\pi)}$$

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Vectors:
$$|v| = \sqrt{{v_1}^2 + {v_2}^2 + {v_3}^2}$$

$$\cos\theta = \frac{a \cdot b}{|a||b|}$$