

# UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# FINAL EXAMINATION **SEMESTER II SESSION 2018/2019**

COURSE NAME

: MATHEMATICS II

COURSE CODE

: BBP 10403

PROGRAMME CODE : BBA/ BBB/ BBD/ BBG/BBF

EXAMINATION DATE : JUNE / JULY 2019

DURATION

: 3 HOURS

INSTRUCTION : ANSWERS ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

TERBUKA

BBP 10403

- Q1 (a) For the piecewise-defined function  $f(x) = \begin{cases} 1 & x < 0 \\ 2 x & 0 \le x < 2 \\ \sqrt{x 2} & x \ge 2 \end{cases}$ 
  - (i) Sketch the graph of f(x)

(4 marks)

(ii) At what values of x is f discontinuous?

(2 marks)

(b) For the piecewise-defined function defined by  $f(x) = \begin{cases} x^2 + 1, & x < 2 \\ -x + 3, & x \ge 2 \end{cases}$ . Sketch the graph of, find the domain and range.

(5 marks)

- (c) Solve the following:
  - (i) If  $f(x) = -x^2 2x 1$ , find f(-3)

(2 marks)

(ii) For f(x) = 2x - 2 and  $g(x) = -x^2 + 1$ , find the composite function defined by  $(f \circ g)(x)$ .

(2 marks)

- (iii) Find the function  $f \circ g(1)$  given that f(x) = 3x + 2 and  $g(x) = \sqrt{2x + 5}$  (2 marks)
- (d) For each of the following pairs of functions, state whether they are inverses of each other.
  - (i)  $f(x) = \frac{x+1}{2}$ , g(x) = 2x-1

(4 marks)

(ii)  $f(x) = \frac{x-1}{2}, g(x) = 2(x+1)$ 

(4 marks)

#### BBP 10403

- Q2 (a) Compute the limits of the following functions:
  - (i)  $\lim_{x\to\infty} \frac{3x^5 7x^2 + 9}{6x^5 2x^4 10}.$

(3 marks)

(ii) 
$$\lim_{x \to -\infty} \sqrt{\frac{2+3x}{x-1}} .$$

(3 marks)

(iii) 
$$\lim_{x \to \infty} \frac{4x^2 - 3x + 6}{5 + 2x - 3x^2}$$
. Use L'Hopital Rule to solve it.

(4 marks)

(iv) 
$$\lim_{x \to 4} \frac{\sqrt{5x - 11} - 3}{\sqrt{x} - 2}$$
. Use L'Hopital Rule to solve it.

(4 marks)

(b) Sketch the graph for  $f(x) = \frac{1}{\sqrt{2-x}}$ . Hence, determine the value of x at which the function is continuous.

(5 marks)

(c) Evaluate the following limits if they exist, based on the graph in Diagram **Q2(c)** below:



Diagram Q2(c)

BBP 10403

(i) 
$$\lim_{x\to 2^-} f(x)$$

(2 marks)

(ii) 
$$\lim_{x \to -2^+} x^2 f(x)$$

(2 marks)

(iii) 
$$\lim_{x\to 0} f(x)$$

(2 marks)

Q3

(a) Find  $\frac{dy}{dx}$  for the following function

(i) 
$$f(x) = \frac{3x^2 - 5}{\sqrt{x}}$$

(3 marks)

(ii) 
$$f(x) = 3 \ln x + 10$$

(3 marks)

(iii) 
$$f(x) = e^x + e^{5x}$$

(3 marks)

(iv) 
$$3y^2 - 5xy + 9x - 2 = 0$$

(3 marks)

(b) Given that  $f(x) = (3 - 2x^2)^5$ , find f''(x). Hence, determine the value of f''(1)

(4 marks)

BBP 10403

- (c) Solve the following related rates:
  - (i) Given that  $y = 3x^2 2x$  and x is increasing at a constant rate of 2 unit per second, find the rate of change of y when x = 4 unit.

(4 marks)

(ii) The area of a circle of radius r cm increases at a constant rate of 10 cm<sup>2</sup> per second. Find the rate of change of r when r = 2 cm. (Use  $\pi = 3.142$ )

(5 marks)

Q4 (a) Find

(i) 
$$\int (5x-2)^2 dx$$

(3 marks)

(ii) 
$$\int_{-2}^{2} \left( s^3 - 3s^2 + 2 \right) ds$$

(3 marks)

(b) Solve  $\int \cos(3x+2)dx$ , by using integration by substitution method

(4 marks)

(c) Solve  $\int x^4 e^x dx$  by using integration by parts method

(5 marks)

(d) Evaluate  $\int \frac{1}{(x-1)^2(x+1)} dx$  using partial fraction.

(5 marks)

(e) Diagram Q4 (d) shows a curve  $x = y^2 - 1$  that intersects the straight line 3y = 2x at point Q. Calculate the volume of the shaded region when the shaded region is circulated through the 360 on the y-axis.



(5 marks)

-END OF QUESTIONS-