

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2018/2019**

COURSE NAME : MATHEMATICS 1

COURSE CODE

: BBM 10303 / BBP 10603

PROGRAMME CODE : BBA / BBB / BBE / BBF / BBG

EXAMINATION DATE : DECEMBER 2018 / JANUARY 2019

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

TERBUKA

- Q1 (a) Given points P(-4.8) and Q(2, y) lie on a cartesian plane.
 - (i) If the mipoint of line PQ is (-1,2), what is the coordinate of point Q?

 [3 marks]
 - (ii) Find the distance from point P to point Q.

[2 marks]

(iii) Find the linear equation that passes through points P and Q.

[4 marks]

(b) A line AB passes through points A(-4,2) and B(-2,10). Line CD is perpendicular to the line AB. Find the equation of the line CD that passes through point E(8,0).

[5 marks]

- (c) Taufiq just plants a rambutan's tree. On the first day, the height of the rambutan's tree is 6cm. The rambutan's tree grows 1.2cm per day.
 - (i) If x = number of the day and y = the height of the rambutan's tree, write a linear equation that represents the above situation.

[4 marks]

(ii) Based on the linear equation in Q1(c)(i), what is the height of the rambutan's tree on day 11th?

[2 marks]

- Q2 (a) Solve the following quadratic equations by using factorization method:
 - (i) $3(x^2 + 2x) 5 = x(x+5) + 10x$

[4 marks]

(ii)
$$2 - \frac{1}{x} = \frac{3}{x+2}$$

[4 marks]

- (b) Solve the following quadratic equation by using quadratic formula method:
 - (i) x(x-2) = 5(x-1)

[4 marks]

(ii) $1 + \frac{8}{x^2} = \frac{4}{x}$

TERBUKA P

4 marks

DIAGRAM Q2(c)

(c) Hana wants to install new wallpaper on the wall. The dimension of the wall is depicted in **DIAGRAM Q2**(c) where the length is x and the width is (x-4). Hana bought seven (7) rolls of wallpapers and each roll of wallpaper can cover the area of $3m^2$. By assuming all the rolls of the wallpaper are used to cover the whole wall without any remainder, calculate the value of x.

[4 marks]

- Q3 (a) Solve each of the following inequalities:
 - (i) $3(x-1) \ge 5(x+2)-5$
 - (ii) |5-2x| < 9

[4 marks]

(b) Decompose $\frac{5x^2 + 20x + 6}{x(x+1)^2}$ into partial fraction.

[6 marks]

- (c) Given that $\tan \theta = \frac{5}{12}$ and $\sin \alpha = \frac{3}{5}$. Without using calculator, find the value of:
 - (i) $\csc\theta$
 - (ii) $\sec \theta$
 - (iii) $\cot \alpha$

[6 marks]

(d) Prove that $\tan \theta + \cot \theta = \sec \theta \csc \theta$

Q4 (a) Find the inverse matrix of matrix $A = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$

[4 marks]

(b) By using Cramer's rule, solve the following system of linear equation:

$$5x_1 - 3x_2 + 2x_3 = 13$$

 $2x_1 - x_2 - 3x_3 = 1$
 $4x_1 - 2x_2 + 4x_3 = 12$

[6 marks]

- (c) Simplify the following expression:
 - (i) 7i(4-3i)
 - (ii) $(5+3i)^2$

[4 marks]

(d) Solve $z = \frac{1+7i}{1+i}$. Hence, express your answer in Polar Form.

[6 marks]

- Q5 (a) Given the vectors $\mathbf{u} = 4\mathbf{i} \mathbf{j} + \mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} \mathbf{k}$. Find:
 - (i) $\mathbf{u} \cdot \mathbf{v}$

[2 marks]

(ii) $\mathbf{u} \times \mathbf{v}$

[2 marks]

(iii) the angle between **u** and **v**

[2 marks]

- (b) Given the vectors $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 4\mathbf{k}$ and $\mathbf{s} = 3\mathbf{i} 2\mathbf{j} \mathbf{k}$. Find:
 - (i) $|\mathbf{r}| + |\mathbf{s}|$

[2 marks]

(ii) $\left|-3\mathbf{r}\right| + 4|\mathbf{s}|$

[3 marks]

(iii) $\frac{\mathbf{r}}{|\mathbf{r}|} + \frac{\mathbf{s}}{|\mathbf{s}|}$

TERBUKA

[3 marks]

CONFIDENTIAL

BBM 10303 / BBP10603

- (c) Given the vectors $\mathbf{a} = 2\mathbf{i} \mathbf{j} + 3\mathbf{k}$, $\mathbf{b} = \mathbf{j} + 7\mathbf{k}$ and $\mathbf{c} = \mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$. Find the value of:
 - (i) $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$

[3 marks]

(ii) $(\mathbf{a} \times \mathbf{b}) - 2\mathbf{c}$

[3 marks]

-END OF QUESTIONS-

CONFIDENTIAL

BBM10303 / BBP 10603

FINAL EXAMINATION FORMULA

SEMESTER/SESSION: SEM I 2018/2019

PROGRAM CODE: BBA / BBB / BBE / BBF / BBG

COURSE CODE : BBM 10303 / BBP 10603 **COURSE NAME** : MATHEMATICS 1

Linear equations:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$(x, y) = (x_1 + x_2, y_1 + y_2)$$

$$slope = \frac{y_2 - y_1}{x_2 - x_1}, x_2 \neq x_1$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

Quadratic equation:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Trigonometry:

$$\sin^2\theta + \cos^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$
$$\cot^2\theta + 1 = \csc^2\theta$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

Solution of Systems of linear:

$$A_{ij} = (-1)^{i+j} M_{ij}$$

$$x_1 = \frac{|D_{x_1}|}{|D|}, x_2 = \frac{|D_{x_2}|}{|D|}, x_3 = \frac{|D_{x_3}|}{|D|}$$

 $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$

 $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$ $cos(\alpha \pm \beta) = cos \alpha cos \beta \mp sin \alpha sin \beta$

 $\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} AA^{-1} = A^{-1}A = I$

Complex Numbers:

$$i^2 = -1$$
$$z = re^{i(\theta + 2k\pi)}$$

$$7 - ro^{i(\theta + 2k\pi)}$$

Vectors:
$$|v| = \sqrt{{v_1}^2 + {v_2}^2 + {v_3}^2}$$

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$\cos\theta = \frac{a \cdot b}{|a||b|}$$