

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAM SEMESTER II 2016/2017 SESSION

COURSE NAME

: FLUID MECHANICS

COURSE CODE

: BBM 30103

PROGRAMME CODE

BBA, BBD, BBG

EXAMINATION DATE

: JUNE 2017

DURATION

3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS.

THIS QUESTION PAPER NEEDS TO BE RETURNED AFTER THE EXAMINATION.

THIS EXAM PAPER CONTAINS FOURTEEN (14) PAGES INCLUSIVE OF COVER

Q1 (a) Convert the following measurements to S.I. Units.

(i) 0.34 in. Hg

(2 marks)

(ii) 98°F

(2 marks)

(b) According to an empirical formula, the energy loss per unit weight of fluid flowing through a nozzle connected to a hose can be estimated by the formula

$$h = (0.04 \text{ to } 0.09)(D/d)^4 V^2 / 2g$$

where h is the energy loss per unit weight, D is the hose diameter, d the nozzle tip diameter, V the fluid velocity in the hose, and g the acceleration of gravity. Do you think this equation is valid in any system of units? Proof this validity and explain your answer.

(6 marks)

(c) Figure Q1(c) shows a manometer with pipe A contains gasoline (SG = 0.7), pipe B contains oil (SG = 0.9), and the manometer fluid is mercury. The initial differential reading is 0.30 m as shown in the figure. Determine the new differential reading if the pressure in pipe A is decreased 2.5 kPa, and the pressure in pipe B remains constant.

(10 marks)

Q2 (a) The inclined differential manometer as shown in Figure Q2(a) contains carbon tetrachloride ($\gamma = 99.5 \ lb/ft^3$). Initially the pressure differential between pipes A and B, which contain a brine (S.G. = 1.1), is zero as illustrated in the figure. It is desired that the manometer give a differential reading of 12 in. (measured along the inclined tube) for a pressure differential of 0.1 psi. Determine the required angle of inclination, θ .

(10 marks)

(b) A structure is attached to the ocean floor as shown in Figure Q2(b). A 2 meter diameter hatch is located in an inclined wall and hinged on one edge. Determine the minimum air pressure, p_1 , within the container that will open the hatch. Neglect the weight of the hatch and friction in the hinge.

(10 marks)

Q3 (a) Air flows steadily along a streamline from point (1) to point (2) with negligible viscous effects. The following conditions are measured: At point (1) $z_1 = 2$ m and $p_1 = 0$ kPa; at point (2) $z_2 = 10$ m, $p_2 = 20$ N/m², and $V_2 = 0$. Calculate the velocity at point (1).

(6 marks)

(b) Air flows steadily through a horizontal 4-in.-diameter pipe and exits into the atmosphere through a 3-in.-diameter nozzle. The velocity at the nozzle exit is 150 ft/s. Determine the pressure in the pipe if viscous effects are negligible.

(6 marks)

(c) Water flows steadily in the vertical variable-area pipe shown in Figure Q3(c). With assumption that the flow is inviscid and incompressible, determine the volumetric flowrate if the pressure in each of the gages reads 50 kPa.

(8 marks)

Q4 (a) Explain laminar, transitional and turbulent pipe flows using Reynolds number as a characteristic.

(6 marks)

(b) For oil (SG = 0.86, $\mu = 0.025 \text{ Ns/m}^2$) flow of 0.3 m³/s through a round pipe with diameter of 500 mm, determine the Reynolds number and indicate whether the flow is laminar or turbulent.

(6 marks)

- (c) Water flows through a horizontal plastic pipe with a diameter of 0.2m at a velocity of 10cm/s.
 - (i) Determine the pressure drop per meter pipe using Moody chart. (4 marks)
 - (ii) Calculate the power lost to the friction per meter of pipe.

(4 marks)

TERBUKA

Q5 (a) The drag characteristics of a torpedo are to be studied in a water tunnel using a 1:5 scale model. The tunnel operates with freshwater at 20° C ($\nu = 1.004 \times 10^{-6}$ m²/s), whereas the prototype torpedo is to be used in seawater at 15.6° C ($\nu = 1.17 \times 10^{-6}$ m²/s). Calculate the velocity required in the water tunnel to simulate the behavior of the prototype moving with a velocity of 30 m/s.

(8 marks)

(b) The pressure rise, Δp , across a pump can be expressed as

$$\Delta p = f(D, \rho, \omega, Q)$$

where D is the impeller diameter, ρ the fluid density, ω the rotational speed (measured in per second) and Q the volumetric flowrate. Using the Buckingham Pi theorem, develop a suitable set of pi terms for this problem.

(12 marks)

-END OF QUESTIONS-

TERBUKA

SEMESTER / SESSION : SEMESTER II / 2016/2017

COURSE NAME : FLUID MECHANICS

PROGRAMME : BBA, BBD, BBG COURSE CODE : BBM 30103

FIGURE Q1(c)

FIGURE Q2(a)

SEMESTER / SESSION : SEMESTER II / 2016/2017

COURSE NAME

: FLUID MECHANICS

PROGRAMME : BBA, BBD, BBG COURSE CODE : BBM 30103

FIGURE Q2(b)

FIGURE Q3(c)

SEMESTER / SESSION : SEMESTER II / 2016/2017

COURSE NAME : FLUID MECHANICS

PROGRAMME : BBA, BBD, BBG

COURSE CODE : BBM 30103

LIST OF FORMULA

List of Useful Formulas & Fluid Properties

Newton's Law of Viscosity, $\tau = \mu \frac{du}{dy}$ $\tau =$ shear stress; $\mu =$ viscosity

Specific Weight, $\omega = \rho g$ $K = Specific Gravity S.G. - \rho$

 $K = {}^{\circ}C+273$ ${}^{\circ}R = {}^{\circ}F+460$

Specific Gravity, S.G. = $\frac{\rho}{\rho_{H_2O\oplus 4^{\circ}C}}$ Ideal Gas Law, $p = \rho RT$

where

p=pressure ρ = density

T = Temperature in Kelvin

 $R = 287Jkg^{-1}K^{-1} = 4110Jkg^{-1}K^{-1}$

Pressure Equation

 $p = p_o + \rho g h = p_o + \rho h$ Gravity, $g = 9.81 m/s^2 = 32.2 ft/s^2$

Gravity, $g = 9.81m/s^2 = 32.2ft/s^2$ $P_{atm} = 101.33kPa(abs) = 2116.2lb/ft^2(abs) = 14.7psi(abs)$

 $\rho_{air} = 1.225 kg/m^3 = 2.38 \times 10^{-3} slugs/ft^2$ $\gamma_{air} = 12.014 N/m^3 = 7.647 \times 10^{-2} lb/ft^3$

Common Liquid Properties

Mercury, $\gamma_{Hg} = 847lb/ft^3 = 133kN/m^3$ Water, $\gamma_{H_2O} = 62.4lb/ft^3 = 9.81kN/m^3$, $\rho_{H_2O} = 1000kg/m^3$ Glycerin, $\gamma_{olucerin} = 78.4lb/ft^3$

Hydrostatic Pressure on a Plane Surface

Resultant Force, $F_R = \gamma h_c A$, $h_c = \text{centroid distance from surface}$ A = area,()_c = centroid

Position of Resultant Force

$$\overline{y_R = \frac{I_{xc}}{y_c A} + y_c}$$

$$x_R = \frac{I_{xyc}}{y_c A} + x_c$$

Bernoulli Equation

$$P_1 + \frac{1}{2}\rho V_1^2 + \gamma z_1 = P_2 + \frac{1}{2}\rho V_2^2 + \gamma z_2$$

or
$$\frac{P_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + z_2$$

Conservation of mass, $\rho_1A_1V_1=\rho_2A_2V_2$ or $A_1V_1=A_2V_2$ given $\rho_1=\rho_2$

7

SEMESTER / SESSION : SEMESTER II / 2016/2017 PROGRAMME : BBA, BBD, BBG

COURSE NAME : FLUID MECHANICS COURSE CODE : BBM 30103

Viscous Flow in Pipes

Reynolds Number, $Re = \frac{\rho VD}{\mu} = \frac{VD}{v}$ where kinematic viscosity, $v = \frac{\mu}{\rho}$

Entrance Length $\frac{l_e}{D} = 0.06 Re$ (Laminar Flow)

 $\frac{l_e}{D} = 4.4(Re)^{1/6}$ (Turbulent Flow)

Fully Developed Laminar Pipe Flow

Pressure Drop, $\Delta p = \frac{4l\tau_w}{D}$ $\tau_w = \text{wall sheer stress}$

Volume Flowrate, $Q = \frac{\pi D^4 \Delta p}{128 \mu l}$ l = length

Friction Factor, $f = \frac{64}{Re} = \frac{8\tau_w}{\rho V^2}$

Pressure drop for a horizontal pipe, $\Delta p = f \frac{l}{D} \frac{\rho V^2}{2}$

Pipe Losses

Major Losses, $h_{\text{L Major}} = f \frac{l}{D} \frac{V^2}{2g}$

Colebrook Formula, $\frac{1}{\sqrt{f}} = -2.0 \log(\frac{\epsilon/D}{3.7} + \frac{2.51}{Re\sqrt{f}})$

Explicit alternative to Colebrook Formula, $\frac{1}{\sqrt{f}} = -1.8 \log[(\frac{\epsilon/D}{3.7})^{1.11} + \frac{6.9}{Re}]$

8

Minor Losses, $h_{\text{L Minor}} = K_L \frac{V^2}{2q}$

 $\epsilon =$ Pipe Equivalent Roughness

TERBUKA

SEMESTER / SESSION: SEMESTER II / 2016/2017

COURSE NAME : FLUID MECHANICS

PROGRAMME : BBA, BBD, BBG COURSE CODE : BBM 30103

Conversion Tables

	To Convert from	to	Multiply by
Acceleration	ft/s ²	m/s^2	3.048 E - 1
Area	Ω^2	m^2	9.290 E - 2
Density	lbm/ft ³	kg/m³	1.602 E + 1
	slugs/ft ³	kg/m³	5.154 E + 2
Energy	Btu	J	1.055 E + 3
	ft • lb	J	1.356
Force	lb	N	4.448
Length	ft	111	3.048 E - 1
	in.	111	2.540 E - 2
	mile	m	1.609 E + 3
Mass	lbm	kg	4.536 E - 1
	slug	kg	1.459 E + 1
Power	ft · lb/s	W	1.356
	hp	W	7.457 E + 2
Pressure	in. Hg (60 °F)	N/m^2	3.377 E + 3
	lb/ft² (psf)	N/m^2	4.788 E + 1
	lb/in. ² (psi)	N/m^2	6.895 E + 3
Specific weight	lb/ft ³	N/m^3	1.571 E + 2
Temperature	्र	°C	$T_C = (5/9)(T_F - 32^\circ)$
	°R	K	5.556 E - 1
Velocity	ft/s	m/s	3.048 E - 1
	mi/hr (mph)	m/s	4.470 E - 1
Viscosity (dynamic)	lb·s/ft ²	$N \cdot s/m^2$	4.788 E + 1
Viscosity (kinematic)	ft^2/s	m^2/s	9.290 E - 2
Volume flowrate	ft ³ /s	m^3/s	2.832 E - 2
	gal/min (gpm)	m^3/s	6.309 E - 5

SEMESTER / SESSION : SEMESTER II / 2016/2017

COURSE NAME : FLUID MECHANICS

PROGRAMME : BBA, BBD, BBG COURSE CODE : BBM 30103

Conversion Tables

	To Convert from	to	Multiply by
Acceleration	m/s ²	ft/s²	3.281
Area	m²	Ω^2	1.076 E + 1
Density	kg/m^3	lbm/ft ³	6.243 E - 2
	kg/m³	slugs/ft ³	1.940 E - 3
Energy	J	Btu	9.478 E - 4
	J	ft.* lb	7.376 E - 1
Force	N	Ib	2.248 E - 1
Length	m	ft	3.281
	m	in.	3.937 E + 1
	m	mile	6.214 E - 4
Mass	kg	lbm	2.205
	kg	slug	6.852 E - 2
Power	W	ft · lb/s	7.376 E - 1
	W	hp	1.341 E - 3
Pressure	N/m^2	in. Hg (60 °F)	2.961 E - 4
	N/m^2	lb/ft ² (psf)	2.089 E - 2
	N/m^2	lb/in. ² (psi)	1.450 E - 4
Specific weight	N/m^3	lb/ft ³	6.366 E - 3
Temperature	°C	°F	$T_F = 1.8 T_C + 32^\circ$
	K	°R	1.800
Velocity	m/s	ft/s	3.281
The Committee of the	m/s	mi/hr (mph)	2.237
Viscosity (dynamic)	$N \cdot s/m^2$	lb ⋅s/ft²	2.089 E - 2
Viscosity (kinematic)	m^2/s	ft^2/s	1.076 E + 1
Volume flowrate	m^3/s	ft ³ /s	3.531 E + 1
the first considerable and an analysis	m^3/s	gal/min (gpm)	1.585 E + 4

SEMESTER / SESSION : SEMESTER II / 2016/2017

COURSE NAME

: FLUID MECHANICS

PROGRAMME : BBA, BBD, BBG

COURSE CODE : BBM 30103

Geometric Properties of Common Shapes

(a) Rectangle

$$I_{xc} = \frac{1}{12}ba^3$$

$$I_{yc} = \frac{1}{12}ab$$

$$I_{xye} = 1$$

(b) Circle

(e) Semicircle

$$A = \frac{\pi R^2}{2}$$

$$I_{xc} = 0.1098R^4$$

$$I_{yx} = 0.3927 R^4$$

$$I_{xyx} = 0$$

(d) Triangle

$$A = \frac{\pi R^2}{\Lambda}$$

$$I_{xv} = I_{yv} = 0.05488R^4$$

$$I_{xyv} = -0.01647R^4$$

$$I_{\rm syc} = -0.01647R^4$$

SEMESTER / SESSION : SEMESTER II / 2016/2017

COURSE NAME : FLUID MECHANICS

PROGRAMME : BBA, BBD, BBG COURSE CODE : BBM 30103

Dimension Associated with Common Physical Quantities

	FLT System	MLT System		FLT System	ML Sys
Acceleration	LT^{-2}	LT^{-2}	Power	FLT-1	ML
Angle	$F^0L^0T^0$	$M^0L^0T^0$	Pressure	FL^{-2}	ML
Angular acceleration	T^{-2}	T^{-2}	Specific heat	$L^2T^{-2}\Theta^{-1}$	L^2T
Angular velocity	T^{-1}	1-1	Specific weight	FL ⁻³	ML
Area	L^2	L^2	Strain	$F^0L^0T^0$	M^0
Density	$FL^{-4}T^{2}$	ML ³	Stress	FL ²	ML
Energy	FL	ML^2T^{-2}	Surface tension	FL^{-1}	MT
Force	F	MLT^{-2}	Temperature	θ	θ
Frequency	T^{-1}	T-1			
Heat	FL	ML^2T^{-2}	Time	T	T
Length	L	L	Torque	FL	ML
Mass	$FL^{-1}T^{2}$	M	Velocity	LT^{-1}	LT
Modulus of elasticity	FL^{-2}	$ML^{-1}T^{-2}$	Viscosity (dynamic)	$FL^{-2}T$	ML
Moment of a force	FL	$ML^{2}T^{-2}$	Viscosity (kinematic)	L^2T^{-1}	L^2T
Moment of inertia (area)	L^4	L^4	Volume	L^3	L^3
Moment of inertia (mass)	FLT^2	ML^2	Work	FL	ML^2
Momentum	FT	MLT^{-1}			

Equivalent Roughness for New Pipes

	Equivalent Roughness, ε		
Pipe	Feet	Millimeters	
Riveted steel	0.003-0.03	0.9-9.0	
Concrete	0.001 - 0.01	0.3 - 3.0	
Wood stave	0.0006-0.003	0.18 - 0.9	
Cast iron	0.00085	0.26	
Galvanized iron	0.0005	0.15	
Commercial steel			
or wrought iron	0.00015	0.045	
Drawn tubing	0.000005	0.0015	
Plastic, glass	0.0 (smooth)	0.0 (smooth)	

SEMESTER / SESSION: SEMESTER II / 2016/2017

COURSE NAME : FLUID MECHANICS PROGRAMME : BBA, BBD, BBG COURSE CODE : BBM 30103

TERBUKA

CONFIDENTIAL

bicgulant part to control years the

SEMESTER / SESSION : SEMESTER II / 2016/2017

COURSE NAME : FLUID MECHANICS

PROGRAMME : BBA, BBD, BBG COURSE CODE : BBM 30103

Loss Coefficient for Pipe Components

Component	K_L	
a. Elbows		
Regular 90°, flanged	0.3	
Regular 90°, threaded	1.5	
Long radius 90°, flanged	0.2	V 388
Long radius 90°, threaded	0.7	
Long radius 45°, flanged	0.2	
Regular 45°, threaded	0.4	
b. 180° return bends		p'
180° return bend, flanged	0.2	
180° return bend, threaded	1.5	
c. Tees		
Line flow, flanged	0.2	# 10 m
Line flow, threaded	0.9	
Branch flow, flanged	1.0	V
Branch flow, threaded	2.0	Charles Control of the Control of th
Daniel 100% andulud		
d. Union, threaded	0.08	v
*e. Valves		
Globe, fully open	10	
Angle, fully open	2	
Gate, fully open	0.15	v III
Gate, ½ closed	0.26	
Gate, $\frac{1}{2}$ closed	2.1	
Gate, $\frac{3}{4}$ closed	17	12
Swing check, forward flow	2	<i>V</i>
Swing check, backward flow	00	AND THE PARTY OF T
Ball valve, fully open	0.05	
Ball valve, $\frac{1}{3}$ closed	5.5	
Ball valve, $\frac{2}{3}$ closed	210	*

