

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2015/2016

COURSE NAME

BASIC CALCULUS

COURSE CODE

BBR33903

PROGRAMME

BACHELOR OF EDUCATION

(PRIMARY SCHOOL)

EXAMINATION DATE

DECEMBER 2015 / JANUARY 2016

DURATION

3 HOURS

INSTRUCTION

ANSWER FIVE QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

BBR33903

Q1 (a) Sketch $y = -(x+6)^2 + 2$. State clearly the x- intercept and y- intercept.

(8 marks)

(b) Sketch $y = \frac{1}{x^2 - 3^2} + 2$.

(6 marks)

(c) Sketch $y = e^x$, $y = \ln x$ and $y = 2e^x$ at the same graph. State clearly the x- intercept and y- intercept.

(6 marks)

- Q2 (a) Evaluate $\lim_{x \to -2} f(x)$ and $\lim_{x \to 2} f(x)$ where $f(x) = \begin{cases} x^2 13 & \text{if } x < -2 \\ 5x + 1 & \text{if } x \ge -2 \end{cases}$ (7 marks)
 - (b) Evaluate $\lim_{x \to 1} \frac{2x^2 3x 2}{2 x}$
 - (i) without using L' Hôpital's rule.
 - (ii) with using L' Hôpital's rule.

(8 marks)

- (c) Find the one side limits for
 - (i) $\lim_{x \to 4^+} \frac{1}{x 4}$
 - (ii) $\lim_{x \to 4^{-}} \frac{1}{x 4}$

Hence determine $\lim_{x\to 4} \frac{1}{x-4}$

(5 marks)

BBR33903

Q3 (a) Find $\frac{dy}{dx}$ for the $y = (5x - x^3)(2x^5 + x^2 - 3x)$.

(4 marks)

(b) Find $\frac{dy}{dx}$ for the following functions

(ii)
$$y = \frac{2x}{\sqrt{x} + 6}$$

(iii)
$$y = \frac{e^x}{\cos x}$$

(8 marks)

- (c) Using the chain rule, differentiate
 - (i) $y = (7 \ln x)^5$
 - (ii) $y = \sqrt[3]{\sin^3 x^2}$

(8 marks)

- Q4 (a) Sand is poured onto a growing conical pile of sand, at the constant rate of $6m^3s^{-1}$. Suppose the side of the cone makes a 60 degree angle to cone's base. Given $V = \frac{1}{3}\pi r^2 h$.
 - (i) How fast is the height of the sand pile increasing when the volume of the cone is 180m^3 ?

(9 marks)

(ii) If the volume of the cone does not change, find the rate of change of its height, h with respect to its radius, r.

(4 marks)

(b) Given $f(x) = x^2 - 6x + \frac{82}{x} + \frac{45}{x^2}$, $x \ne 0$. Find all critical points of f(x). Then use the Second Derivative Test to determine the properties of all the local extreme points.

(7 marks)

(, _____)

BBR33903

Q5 (a) Evaluate $\int_{1}^{4} \left(\sqrt{x} + \frac{1}{\sqrt{x}} \right) dx.$

(4 marks)

(b) Evaluate $\int_{0}^{\pi/8} \sin^5 2x \cos 2x \, dx$ by using substitution method.

(7 marks)

(c) (i) Change $\frac{3x^2 - 7x - 2}{x^2 - x}$ into partial fraction.

(5 marks)

(ii) Thus, use the answer from Q5(c)(i) to evaluate $\int \frac{3x^2 - 7x - 2}{x^2 - x} dx$.

(4 marks)

Q6 (a) Find the area of $f(x) = 4x(x^2 + x)$ for $0 \le x \le 5$.

(5 marks)

(b) Find the area of the region enclosed by $\sqrt{y} = x$ and y = x + 6, by integration with respect to x.

(7 marks)

(c) Find the volume of the solid generated when the region enclosed between $y = \sqrt{x}$, x = 1 and x = 4 is revolved about the x-axis.

(8 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2015/2016

PROGRAMME: BACHELOR OF EDUCATION

(PRIMARY SCHOOL)

COURSE NAME

: BASIC CALCULUS

COURSE CODE: BBR33903

FORMULAS

Differentiation:

$$\frac{d}{dx}[c] = 0$$

$$\frac{d}{dx}\left[x^n\right] = nx^{n-1}$$

$$\frac{d}{dx}[c\ f(x)] = c\frac{d}{dx}[f(x)]$$

$$\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}[f(x)] \pm \frac{d}{dx}[g(x)]$$

$$\frac{d}{dx}[f(x)g(x)] = f(x) \cdot \frac{d}{dx}[g(x)] + g(x) \cdot \frac{d}{dx}[f(x)] \qquad \frac{d}{dx}[\cot x] = -\csc^2 x$$

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \cdot \frac{d}{dx} [f(x)] - f(x) \cdot \frac{d}{dx} [g(x)]}{[g(x)]^2}$$

$$\frac{d}{dx}[\sin x] = \cos x$$

$$\frac{d}{dx}[\cos x] = -\sin x$$

$$\frac{d}{dx} [\tan x] = \sec^2 x$$

$$\frac{d}{dx}[\sec x] = \sec x \tan x$$

$$\frac{d}{dx}[\cot x] = -\csc^2 x$$

$$\frac{d}{dx}[\csc x] = -\csc x \cot x$$

$$\frac{d}{dx}\left[\sin^{-1}x\right] = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\left[\cos^{-1}x\right] = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\left[\tan^{-1}x\right] = \frac{1}{1+x^2}$$

$$\frac{d}{dx}\left[\sec^{-1}x\right] = \frac{1}{|x|\sqrt{x^2 - 1}}$$

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2015/2016

PROGRAMME

: BACHELOR OF EDUCATION

(PRIMARY SCHOOL)

COURSE NAME : BASIC CALCULUS

COURSE CODE: BBR33903

Integration:

$$\int c f(x)dx = c F(x) + C$$

$$\int \tan x \, dx = \ln \left| \sec x \right| + C$$

$$\left[\left[f(x) \pm g(x) \right] dx = F(x) \pm G(x) + C \right]$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\int x^r \, dx = \frac{x^{r+1}}{r+1} + C \, , (r \neq -1)$$

$$\int \csc^2 x \, dx = -\cot x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \sec x \, \tan x \, dx = \sec x + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \csc x \cot x \, dx = -\csc x + C$$

$$\int \csc x \, dx = -\ln\left|\csc x + \cot x\right| + C$$

$$\int \sec x \, dx = \ln \left| \sec x + \tan x \right| + C$$

Area of region:

$$A = \int_{a}^{b} [f(x) - g(x)] dx \qquad \text{or} \qquad A = \int_{a}^{d} [w(y) - v(y)] dy$$

$$A = \int_{c}^{d} [w(y) - v(y)] dy$$

Volume cylindrical shells:

$$V = \int_{a}^{b} 2\pi x f(x) dx$$

$$V = \int_{c}^{d} 2\pi y \, f(y) \, dy$$