CONFIDENTIAL

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2012/2013

COURSE NAME	:	AUTOMATION SYSTEM AND ROBOTICS
COURSE CODE	:	DAE32503
PROGRAMME	:	3 DAE/ DAL
EXAMINATION DATE	:	MARCH 2013
DURATION	:	2 1/2 HOURS
INSTRUCTIONS	:	ANSWER FOUR (4) QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

(a) Define the terms of

Q1

- (i) Robot
- (ii) Robotics

(4 marks)

(b) Nowadays robots are preferred in industrialization. Discuss three (3) reasons of using robots instead of human to perform a task.

(6 marks)

- (c) Figure Q1(c) shows an industrial robot.
 - (i) Label all the basic components of industrial robot on the figure itself. (Please attach the answered paper with the answer booklet)
 - (ii) Describe each component briefly.

(15 marks)

Q2 (a) You are working as an Assistant Engineer in a rice manufacturer company. You and your engineer have been assigned to find a robot that could handle palletizing on the plant floor. Then, you come across these robot specification catalogues (see Figure Q2 (a)(i) & Figure Q2(a)(ii)).

- (i) Compare robot **Presto LP 130-01** with robot **OKURA A700III** by explaining each robot type of motion, DOF, payload to body weight ratio, accuracy and reach.
- (ii) Neglecting the price, choose the most suitable robot to accomplish the task and give two appropriate reasons.

(17 marks)

(b) Referring to Figure Q2(b), suggest four (4) safety procedures that should be followed by user to avoid all possible mishaps that might occur during the operation of the cell.

(8 marks)

Q3 (a) The SCARA and rectangular robot are types of robot manipulator configuration. Differentiate them according to;

- (i) Axes motion.
- (ii) Sketch of work envelope for swing view and elevation view.

(6 marks)

DAE 32503

- Figure Q3(b)(i) and Figure Q3(b)(ii) are 3-D view of work envelope of robots. From the figures, identify the following characteristics and compare them in a table form;
 - (i) Type of arm geometry.

` (b)

- (ii) Sketch the appropriate robot manipulator.
- (iii) Two advantages of manipulator configuration.
- (iv) Two disadvantages of manipulator configuration

(14 marks)

- (c) Identify and determine the following industrial robot in Figure Q3(c)(i) and Figure Q3(c)(ii) according to their characteristic as below:
 - (i) Arm geometry.
 - (ii) Number of degree of freedom (DOF).

(5 marks)

- Q4 (a) The path control is the method of directing the route taken by a robot to travel from one location to another. Briefly explain
 - (i) limited sequence path control
 - (ii) point-to-point path control

(12 marks)

(b) Pneumatic is one of the power source to actuate robot manipulator. Summarize the advantages of pneumatic power source in industrial robot.

(4 marks)

(c) The most commonly used electric drives in robotics are DC servo motor, AC servo motor and Stepper motor. List three (3) features for each electric drive mentioned.

(9 marks)

Q5 (a) Based on graftset in Figure Q5(a) illustrate a ladder diagram using KEEP instructions.

(4 marks)

(b) A Separator Conveyor as in the Figure Q5(b), with an up counter must be programmed as part of a batch counting operation to sort parts automatically for quality control. The counter is installed to divert 1 part out of every 10 for quality control or inspection

DAE 32503

purpose. The process operates as follows. A Start push button (SB) is used to turn on the conveyor motor. A proximity sensor (S1) will counts the parts as they pass on the conveyor. When a count of 10 is reached, the counter's output activates the gate

solenoid diverting the part into the inspection line. The gate solenoid is energized for 2 seconds, which allows enough time for the part to continue to the quality line. The gates return to its normal position when the 2 seconds time period ends. The counter reset to 0 and continue accumulates counts. A reset push button (RB) is provided to reset all the operation.

- (i) Identify the input and output assignment by using CJ1M address.
- (ii) Describe the production process flow by using motion diagram.
- (iii) Illustrate the PLC ladder diagram.

(15 marks)

(c) Write down the mnemonic code for the ladder diagram shown in Figure Q5(c).

(6 marks)

Q6 (a) Computer Numerically Controlled (CNC) can be defined as a form of programmable automation in which the process is controlled by number, letter and symbol. Discuss the important of CNC in the industry.

(4 marks)

- (b) Automation manufacturing systems can be classified into three basic types that are Fixed Automation, Programmable Automation and Flexible Automation. Discuss the features of each automation types above according to:
 - (i) Definition
 - (ii) Configuration operation
 - (iii) Production

(10 marks)

- (c) Suggest type of automation for the following products manufacturing and give reasons for the recommendation.
 - (i) Palm oil
 - (ii) Hard disk
 - (iii) Washing machine

(6 marks)

(d) The concept of automated system can be applied to various levels of factory operation. List accordingly to the five (5) hierarchy level of automation.

(5 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2012/2013 COURSE : AUTOMATION SYSTEM & ROBOTICS

`

PROGRAMME : 3 DAE/ DAL COURSE CODE : DAE32503

Robot model [Pre:	sto LP130-01	[Presto LP180-01]	:	
ltem		Specification		
Robot model		Presto LP130-01	Presto LP180-01	
Structure		Articulated		
Degree of freedom		4		
Drive system		AC servo motor		
Max. working range	J 1	±3.14rad		
	J2	+0.71~ -1.65ra d		
	εL	+0.30 ~ -2.04ra d		
	j4	±6.28 rad (±360°)		
Max. speed	J1	2.27 rad/s	2.01 rad/s	
	J2	2.01 rad/s	1.75 rad/s	
	٤L	2.01 rad/s	1.83 rad/s	
	J4	6.98 rad/s	6.28 rad/s	
Max. payload	Wrist	130 kg	180 kg	
	Fore arm	25 kg		
Allowable moment of inertia	J4	50 kgm²	69 kgm²	
Position repeatability		±0.3 mm	±0.4 mm	
Rated air pressure		-101.3kPa ~ 0.69MPa		
Airpiping		2-φ12×8 (to the wrist portion)		
Application signals		20 wires (to the wrist portion)		
		6 wires (to the forearm)		
Ambient temperature		0 ~ 45°C		
Installation type		Floor mounting		
Robot mass		1150kg		
1[rad] = 180/π[°]	, 1[N·m] = 1,	/9.8[kgf ' m]		

FIGURE Q2(a)(i)

OKURA Robot					
Robot Type	A1600111	A700111	1600III-W		
Motion System	Multi-Articulated, polar coordinate system				
Payload	14((inc. the weight)	300 kg (inc. the weight of Gripper Hand)			
Freedom of axes	4 axis (R, D, O and T) + 5th Axis as opition				
Operation Range	R axis 360 degree	R axis 360 degree	R axis 360 degree		
	D axis 2,300mm	D axis 2,300mm	Daxis 2,300mm		
	O axis 1518mm	O axis 1750mm	O axis 1518mm		
	Taxis 440 degree	Taxis 440 degree	Taxis 440 degree		
Accuracy	Repeatable stop position accuracy ± 1.0mm				
Robot weight	1,160 kg	1,250 kg	1,175 kg		
Pneumatic consumption	180L / Min (ANR)				
Ambient temperature	0-40 Celsius				
Relative humidity	35 -85%				

FIGURE Q2(a)(ii)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2012/2013 COURSE : AUTOMATION SYSTEM & ROBOTICS

PROGRAMME : 3 DAE/ DAL COURSE CODE : DAE32503

FIGURE Q2(b)

FIGURE Q3(b)(i)

FIGURE Q3(b)(ii)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2012/2013 COURSE : AUTOMATION SYSTEM & ROBOTICS PROGRAMME : 3 DAE/ DAL COURSE CODE : DAE32503

FIGURE Q3(c)(i)

FIGURE Q3(c)(ii)

SEMESTER / SESSION : SEM II / 2012/2013 COURSE : AUTOMATION SYSTEM & ROBOTICS

.

•

PROGRAMME : 3 DAE/ DAL COURSE CODE : DAE32503

FIGURE Q5(a)

FIGURE Q5(b)

