

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2019/2020**

COURSE NAME

: AIRCRAFT AERODYNAMICS

COURSE CODE

BDU 10703

PROGRAMME CODE : BDC/BDM

EXAMINATION DATE : DECEMBER 2019/JANUARY 2020

DURATION

: 3 HOURS

INSTRUCTION

: PART A: ANSWERS ALL QUESTIONS

PART B: ANSWERS ONE (1) QUESTION

ONLY

THIS QUESTION PAPER CONSISTS OF THREE (3) PAGES

CONFIDENTIAL

BDU 10103

- Q1 (a) There are five important flow parameters need to be known in aerodynamics study. They are namely:
 - Reynolds Number R_L
 - Mach Number M
 - Knudsen Number K_n
 - Strouhal number STR
 - Stanton Number S_{TN}

Select two of them. Write down their equations and explain their physical meanings for those selected flow parameters.

(10 marks)

- (b) Given a potential function of flow Φ defined as $\Phi(x,y) = K \ln(\sqrt{x^2 + y^2})$, if $K = 10 \, m^2/sec.$, then:
 - (i) Prove that the given flow $\Phi(x, y)$ is irrotional flow

(10 marks)

(ii) Determine the velocity at the point A(5,5)

(10 marks)

An airfoil 5 digits Naca series 23012 immersed in the flow field with the incoming free stream makes 5° angle of attack with respect to the airfoil's chord line. The camber line of this airfoil is given as:

$$\frac{y_c}{c} = \begin{cases} 2.6596 \left[\left(\frac{x}{c} \right)^3 - 0.6075 \left(\frac{x}{c} \right)^2 + 0.1147 \left(\frac{x}{c} \right) \right] & \text{for } 0 \le \left(\frac{x}{c} \right) \le 0.2025 \\ 0.02208 \left[1 - \left(\frac{x}{c} \right) \right] & \text{for } 0.2025 \le \left(\frac{x}{c} \right) \le 1.0 \end{cases}$$

Using Thin airfoil theory, evaluate:

(a) the thin airfoil coefficient A_0 , A_1 and A_2 then determine:

(15 marks)

(b) the lift coefficient C_l

(4 marks)

(c) The pitching moment coefficient at the leading edge c_{mle}

(3 marks)

(d) The center of pressure c_P

(3 marks)

Q3 (a) Explain the reason why wing of incidence angle is required in the wing

placement to the fuselage.

(5 marks)

(b) Describe the purpose of wing twist angle.

(5 marks)

- (c) Give the reason why the most of glider airplanes are used a high aspect ratio wing (5 marks)
- (d) what is the influence of swept angle to the aerodynamic characteristics?.

(5 mark)

Part B: Answer One (1) Question Only

Q4 An uniform flow past through an object at speed $U_{\infty} = 30 \frac{m}{sec}$ with the angle of attack $\alpha = 5^{\circ}$. The cross section of the object is ellipse having form:

$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

If the flow behave as a two dimensional potential flow, then by using a Joukowsky transformation, evaluate:

(a) The complex potential function F(z) of the flow field

(10 marks)

(b) The conjugate complex velocity w(z)

(10 marks)

(c) The lift coefficient on the ellipse.

(5 marks)

- Q5 A symmetrical airfoil NACA 0008 is immersed in the uniform flow of $U_{\infty}=10~\frac{m}{sec}$ and the angle of attack $\alpha=5^{0}$. The free stream static pressure $p_{\infty}=10^{5}~\frac{N}{m^{2}}$. The airfoil chord length c=0.1 m and the maximum airfoil thickness $y_{tmax}=0.008~m$. By using Joukowsky transformation, evaluate:
 - (a) The required formulation of Joukowsky transformation function.

(10 mark)

(b) The complex potential function for the flow around this airfoil

(10 mark)

(c) The lift coefficient C_L

(5 mark)

-END OF QUESTIONS -