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Q1

Q2

Q3

(a)

(b)

(c)

(a)

(b)

(a)

(b)

(c)

Sketch the domain of the following function function :

fG,y) =In((x?+y2—4)(9 — x2 —y?)

(6 marks)

Let z= f(x,y) and f(x,y) = x? + 9z2. By letting = = 1, 4 and 9, sketch the level
curves of /. Hence sketch the 3D graph of /.

(7 marks)

, 2 L .
Given x% — 3yz? = 2 — xyz, evaluate ﬁ and %—;by implicit differentiation.

(7 marks)
Letz= i- ,X =2cosuandy = 3 sinv. Use the chain rule to find g—i

(4 marks)
Evaluate all the extreme points (if exist) for f(x,y) = ¢’ cos x

(8 marks)

The dimension of a closed rectangular box is 3 m, 4 m and 5 m respectively with the
, 100 . " . . :
possible error To, CM- Use partial derivatives to estimate the maximum possible error

in calculating volume of the box.

(8 marks)

Use double integrals to calculate the volume of the tetrahedron 3x + 2y + 4z = [2in
the first octant.
(5 marks)

Analyze all relative maxima, relative minima and saddle points, if any for

fle,y)=x"=3xy+y’.

(8 marks)

" 4 \"4:-.\'2 [4—y?—x? 5 .
Transform the integral I( _[) L\ 22 x? +y* + 2% dzdydx  to spherical
)

coordinates. Then calculate the triple integral.
2
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(7 marks)
Q4 (a) Prove that the curvature of a circle of radius 7 is %
(10 marks)
(b)  Convert to spherical coordinates and evaluate
3 Wo-xZ ;\Jo-x2-y?
fo fo g f_\/g_—x‘z_—yz(xz + y2 + z%)dzdydx
(10 marks)

Q5 (a) Evaluate [ ; 3% — yds, where C is the line segment from P (3,5) to Q (1,2).
(10 marks)

(b)  Verify the Green’s Theorem for the line integral (x2 4+ y¥)dx — x dy, where C
c

consists of the portion of arc of circle x? + 3 = I counterclockwise from (1,0) to (0.1),
straight line segment from (0,1) to (0,0) and (0,0) to (1,0).
(10 marks)

Q6 (a)  Use Gauss Theorem to evaluate [f _ F.ndS  where F(x,y,z) = Civryj+etk,

n is oriented outward and o is the surface enclosed by the cylinder x? + 3° = 4, planes
z=0andz=>5.

(10 marks)

(b)  Evaluate the surface integral | fa x? + y2dS where o is the portion of the cone

z= J3(x2+y?)for0<z<3
(10 marks)

e e a1

]

-END OF QUESTION -
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FORMULA
Total Differential
For function z = f(x,y), the total differential of z, dz is given by:
e = & dx+édv
ox oy
Relative Change

For function z = f(x,y), the relative change in z is given by:
d_ozdv o dy
z Oxz &:z

Implicit Differentiation
Suppose that = is given implicitly as a function z= f(x,y)by an equation of the form
F(x,y,z)=0, where F(x,y, f(x,y))=0forall (x,y)in the domain of /, hence,

Oz F oz e

Z=-xand —=--2

ox  F O

Extreme of Function with Two Variables
D= f.(a,b)f,(a,b)-[f,(ab)]
a. If D>0and [ (a,b)<0(or f:n,(a,b)<0)
f(x, y)has a local maximum value at (a,b)
b. If D>0and £, (a,b)>0(or fm,(a,b)>0)

f(x, y)has a local minimum value at (a,b)

g If D<0
f(x,y)has a saddle point at (a,b)
d. If D=0

The test 1s inconclusive

Surface Area
Surface Area = I I das
[7

= [+ () a4
R

CONFIDENTIAL




CONFIDENTIAL BDA 24003

FINAL EXAMINATION
SEMESTER / SESSION : SEM 1/2019/2020 PROGRAMME CODE : BDD
COURSE NAME: ENGINEERING MATHEMATICS 11T COURSE CODE : BDA 24003

Polar Coordinates:
x=rcosd
y=rsinf

x° + y2 =’

where 0<0< 27

[[ 7.yyda=[[ f(r.0)rdrao

Cylindrical Coordinates:
x=rcosd
y=rsing

“ =

where 0<8< 27

] fGey.2av = [[[ 1.6,z ydzdrdo

Spherical Coordinates:

X = psingcos

y = psingsinf

o= pcosg

pz s 2 & yz 422

where 0<g<mand 0<H<2x

J[[ #e21av = [[[ £(0.0.000° singd gt

In 2-D: Lamina
Given that &(x, y)1s a density of lamina

Mass, m = ” S(x, y)dA, where
R

Moment of Mass
e About x-axis, M = H yo(x,y)dA
R
b. About y-axis, M, = [[x8(x, y)dA
R

A
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Centre of Mass
Non-Homogeneous Lamina:

— M
e[ )

m

Centroid

Homogeneous Lamina:

— 1 — 1

x=——||xd4d and y=——— || yd4
Areaof R J:J g Areaof R -Uy

R

Moment Inertia:

a. 1= j [ 6 (x, y)da
R

b. 1, = [[y*6(x,y)dA
R

c. I, = [[ (¢ + y")8(x, y)dA
R

In 3-D: Solid
Given that d(x, y, z) is a density of solid

Mass, m = ”I o(x,y,2)dV
G

If 6(x,y,z)=c, where c is a constant, m = ”f dA is volume.
G

Moment of Mass

a. About yz-plane, M = ” J' xo(x,y,z)dV
G

b. About xz-plane, M _ = ” j yo(x,y,z)dV
G

C. About xy-plane, M, = J‘J‘J‘ z0(x,y,z)dV
Centre of Gravity )

e (M, M. M,
(.x,.V, :) = - {3 = 2 -
m m m
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Moment Inertia

a. About x-axis, /, = j j (3 +:2)8(x, y,2)dV
G

b. About y-axis, 1, = [[[(* +)8(x, y,5)dV
G

C.

About z-axis, I, = jj [ +3%)8(x, . 2)av
G
Directional Derivative

D, f(x,y)=(fi+f,]j)u

Del Operator

V:£i+ij+ik
ox oy z

Gradient of ¢ =V¢

Let F(x,y,z)= Mi+ Nj+ Pk , hence,

The Divergence of F=VF = 6]&_/]+ %—ng
ox 0Oy oz
The Curl of F=VxF
i j k
BRI
ox oy Oz
M N P
oP ON). (oP 6M]. ON oM
i} = i-| ——|j+| ——— |k
oy oz ox 0z ox Oy

e e ———————.
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Let C is smooth curve defined by r(7)= x()i+ y(1)j+ z(1 )k , hence,

The Unit Tangent Vector, T(1) =

The Principal Unit Normal Vector, N(¢) =

r'(s)
e

T'@)
Tl

The Binormal Vector, B(¢) = T(z)x N(t)

Curvature
_ITw)
(o) ]]

Radius of Curvature

1
pP=—
K

Green’s Theorem

[fiMdx+ Ny = [ (
(& R

Gauss’s Theorem

v _om),,
ox oy

.UF.ndSzj;[J'v.FdV

Stoke’s Theorem

[ﬁF-dr:H(VxF)
c s

Arc Length

*n C[ :S‘

If v(1) = x(t)i+ y(1)j+z()k,1 €[a,b], hence, the are length,

b b
g ” r'(1)| dr :j \/[x'(r W+ ['(OF +[2'()] dr
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