

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2019/2020

COURSE NAME

: ENGINEERING MATHEMATICS III

COURSE CODE

BDA 24003

PROGRAMME CODE : BDD

EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020

DURATION

3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

BDA 24003

Q1 (a) Sketch the domain of the following function :

$$f(x,y) = \ln((x^2 + y^2 - 4)(9 - x^2 - y^2)$$

(6 marks)

(b) Let z = f(x, y) and $f(x, y) = x^2 + 9z^2$. By letting z = 1, 4 and 9, sketch the level curves of f. Hence sketch the 3D graph of f.

(7 marks)

(c) Given $x^2 - 3yz^2 = 2 - xyz$, evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ by implicit differentiation.

(7 marks)

Q2 (a) Let $z = \frac{x}{y}$, $x = 2 \cos u$ and $y = 3 \sin v$. Use the chain rule to find $\frac{\delta z}{\delta u}$

(4 marks)

(b) Evaluate all the extreme points (if exist) for $f(x,y) = e^y \cos x$

(8 marks)

(c) The dimension of a closed rectangular box is 3 m, 4 m and 5 m respectively with the possible error $\frac{100}{192}$ cm. Use partial derivatives to estimate the maximum possible error in calculating volume of the box.

(8 marks)

Q3 (a) Use double integrals to calculate the volume of the tetrahedron 3x + 2y + 4z = 12 in the first octant.

(5 marks)

(b) Analyze all relative maxima, relative minima and saddle points, if any for $f(x, y) = x^3 - 3xy + y^3$.

(8 marks)

(c) Transform the integral $\int_0^2 \int_0^{\sqrt{4-x^2}} \int_0^{\sqrt{4-y^2-x^2}} z^2 \sqrt{x^2+y^2+z^2} \, dz \, dy \, dx$ to spherical coordinates. Then calculate the triple integral.

(7 marks)

Prove that the curvature of a circle of radius r is $\frac{1}{r}$ Q4 (a)

(10 marks)

Convert to spherical coordinates and evaluate (b)

$$\int_{0}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{-\sqrt{9-x^2-y^2}}^{\sqrt{9-x^2-y^2}} (x^2 + y^2 + z^2) dz dy dx$$

(10 marks)

- Evaluate $\int_C 3x yds$, where C is the line segment from P (3,5) to Q (1,2). Q5 (a) (10 marks)
 - Verify the Green's Theorem for the line integral $\int_C (x^2 + y^2) dx x dy$, where C (b) consists of the portion of arc of circle $x^2 + y^2 = I$ counterclockwise from (1,0) to (0,1), straight line segment from (0,1) to (0,0) and (0,0) to (1,0).

(10 marks)

Use Gauss Theorem to evaluate \iint_{σ} $\textbf{\textit{F}}.\, \textbf{\textit{ndS}}$, where $\textbf{\textit{F}}(x,y,z)=x^2\,\mathbf{i}+y^2\,\mathbf{j}+z^2\,\mathbf{k}$, Q6 (a) **n** is oriented outward and σ is the surface enclosed by the cylinder $x^2 + y^2 = 4$, planes z = 0 and z = 5.

(10 marks)

Evaluate the surface integral $\iint_{\sigma} x^2 + y^2 dS$ where σ is the portion of the cone (b) $z = \sqrt{3(x^2 + y^2)}$ for $0 \le z \le 3$.

(10 marks)

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2019/2020 COURSE NAME: ENGINEERING MATHEMATICS III PROGRAMME CODE : BDD COURSE CODE : BDA 24003

FORMULA

Total Differential

For function z = f(x, y), the total differential of z, dz is given by:

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

Relative Change

For function z = f(x, y), the relative change in z is given by:

$$\frac{dz}{z} = \frac{\partial z}{\partial x} \frac{dx}{z} + \frac{\partial z}{\partial y} \frac{dy}{z}$$

Implicit Differentiation

Suppose that z is given implicitly as a function z = f(x, y) by an equation of the form F(x, y, z) = 0, where F(x, y, f(x, y)) = 0 for all (x, y) in the domain of f, hence,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

Extreme of Function with Two Variables

$$D = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

- a. If D > 0 and $f_{xx}(a,b) < 0$ (or $f_{yy}(a,b) < 0$) f(x,y) has a local maximum value at (a,b)
- b. If D > 0 and $f_{xx}(a,b) > 0$ (or $f_{yy}(a,b) > 0$) f(x,y) has a local minimum value at (a,b)
- c. If D < 0f(x, y) has a saddle point at (a, b)
- d. If D = 0The test is inconclusive

Surface Area

Surface Area
$$= \iint_{R} dS$$
$$= \iint_{R} \sqrt{(f_{x})^{2} + (f_{y})^{2} + 1} dA$$

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2019/2020

PROGRAMME CODE: BDD

COURSE NAME: ENGINEERING MATHEMATICS III

COURSE CODE

: BDA 24003

Polar Coordinates:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$x^2 + y^2 = r^2$$

where
$$0 \le \theta \le 2\pi$$

$$\iint\limits_R f(x,y)dA = \iint\limits_R f(r,\theta)rdrd\theta$$

Cylindrical Coordinates:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z$$

where $0 \le \theta \le 2\pi$

$$\iiint\limits_G f(x,y,z)dV = \iiint\limits_G f(r,\theta,z)rdzdrd\theta$$

Spherical Coordinates:

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

$$\rho^2 = x^2 + y^2 + z^2$$

where $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$

$$\iiint\limits_G f(x, y, z)dV = \iiint\limits_G f(\rho, \phi, \theta)\rho^2 \sin \phi d\rho d\phi d\theta$$

In 2-D: Lamina

Given that $\delta(x, y)$ is a density of lamina

Mass,
$$m = \iint_{\mathbb{R}} \delta(x, y) dA$$
, where

Moment of Mass

a. About x-axis,
$$M_x = \iint_R y \delta(x, y) dA$$

b. About y-axis,
$$M_y = \iint_R x \delta(x, y) dA$$

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2019/2020 COURSE NAME: ENGINEERING MATHEMATICS III PROGRAMME CODE: BDD

COURSE CODE

: BDA 24003

Centre of Mass

Non-Homogeneous Lamina:

$$(x, y) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$$

Centroid

Homogeneous Lamina:

$$\overline{x} = \frac{1}{Area \ of} \iint_{R} x dA \text{ and } \overline{y} = \frac{1}{Area \ of} \iint_{R} y dA$$

Moment Inertia:

a.
$$I_{y} = \iint_{R} x^{2} \delta(x, y) dA$$

b.
$$I_x = \iint y^2 \delta(x, y) dA$$

b.
$$I_{x} = \iint_{R} y^{2} \delta(x, y) dA$$
c.
$$I_{o} = \iint_{R} (x^{2} + y^{2}) \delta(x, y) dA$$

In 3-D: Solid

Given that $\delta(x, y, z)$ is a density of solid

Mass,
$$m = \iiint_G \delta(x, y, z) dV$$

If $\delta(x, y, z) = c$, where c is a constant, $m = \iiint_C dA$ is volume.

Moment of Mass

a. About yz-plane,
$$M_{yz} = \iiint_G x \delta(x, y, z) dV$$

b. About xz-plane,
$$M_{xz} = \iiint_G y \delta(x, y, z) dV$$

c. About xy-plane,
$$M_{xy} = \iiint_G z \delta(x, y, z) dV$$

Centre of Gravity

$$(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)$$

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2019/2020 COURSE NAME: ENGINEERING MATHEMATICS III PROGRAMME CODE: BDD

COURSE CODE

: BDA 24003

Moment Inertia

a. About x-axis,
$$I_x = \iiint_C (y^2 + z^2) \delta(x, y, z) dV$$

b. About y-axis,
$$I_y = \iiint_G (x^2 + z^2) \delta(x, y, z) dV$$

c. About z-axis,
$$I_z = \iiint_G (x^2 + y^2) \delta(x, y, z) dV$$

Directional Derivative

$$D_{\mathbf{u}}f(x,y) = (f_{x}\mathbf{i} + f_{y}\mathbf{j}) \cdot \mathbf{u}$$

Del Operator

$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$$

Gradient of $\phi = \nabla \phi$

Let $\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$, hence,

The **Divergence** of $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$

The Curl of $\mathbf{F} = \nabla \times \mathbf{F}$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix}$$
$$= \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k}$$

CONFIDENTIAL

BDA 24003

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2019/2020

COURSE NAME: ENGINEERING MATHEMATICS III

PROGRAMME CODE: BDD

COURSE CODE

: BDA 24003

Let C is smooth curve defined by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, hence,

The Unit Tangent Vector,
$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

The Principal Unit Normal Vector,
$$N(t) = \frac{T'(t)}{\|T'(t)\|}$$

The **Binormal Vector**, $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$

Curvature

$$\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$$

Radius of Curvature

$$\rho = \frac{1}{\kappa}$$

Green's Theorem

$$\iint_{C} M dx + N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$$

Gauss's Theorem

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \iiint_{G} \nabla \cdot \mathbf{F} dV$$

Stoke's Theorem

$$\iint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS$$

Arc Length

If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}, t \in [a, b]$, hence, the arc length,

$$s = \int_{a}^{b} || \mathbf{r}'(t) || dt = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt$$