

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER 1 **SESSION 2019/2020**

COURSE NAME

: ENGINEERING MATHEMATICS II

COURSE CODE

: BDA 14103

PROGRAMME

: BDD

EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020

DURATION

: 3 HOURS

INSTRUCTION

: PART A: ANSWER ALL

QUESTIONS.

PART B: ANSWER THREE (3)

QUESTIONS ONLY OUT OF FOUR.

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

CONFIDENTIAL

PART A

Q1 Let f(x) be a function of period 2π such that

$$f(x) = \begin{cases} -5, & -\pi \le x < 0 \\ 5, & 0 \le x < \pi \end{cases}$$
$$f(x) = f(x + 2\pi)$$

(a) Sketch the graph of f(x) in the interval $-2\pi < x < 2\pi$

(2 marks)

(b) Prove that the Fourier series for f(x) is:

$$f(x) = \frac{20}{\pi} \left[sinx + \frac{1}{3} sin3x + \frac{1}{5} sin5x + \cdots \right]$$

(12 marks)

(c) By giving an appropriate value for x, demonstrate that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

(6 marks)

A rod of length 2 m is perfectly insulated laterally, with ends kept at temperature 0°C and its temperature at x is initially $f(x) = 100 \sin(\pi x/2)$ °C. The heat equation is,

$$\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$$

(a) By using the method of separation of variable, and applying the boundary condition, prove that

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{2} e^{-\frac{n^2 \pi^2 t}{2}}$$

where b_n is an arbitrary constant.

(14 marks)

(b) By applying the initial condition, find the value of b_n .

(6 marks)

CONFIDENTIAL

PART B

Q3 (a) Sketch the graph and express the following function in term of unit step functions.

$$f(t) = \begin{cases} 0, & 0 \le t < 1\\ (t-1), & 1 \le t < 2\\ 1, & t \ge 2 \end{cases}$$

(5 marks)

(b) By using the obtained relation in Q3 (a), solve the Laplace transforms of the function by using a second shift property.

(5 marks)

(c) Solve the inverse Laplace transforms of the following expressions.

$$\frac{s+1}{(s+3)^2+16}$$

(10 marks)

Q4 (a) For the differential equation given below:

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 5y = 3e^{2x}$$

Determine:

(i) the general solution; and

(ii) the particular solution to satisfy the conditions: y(0) = 2 and y'(0) = 2.

(8 marks)

(b) An object at temperature θ (in °C) is placed in a room that is at temperature $\theta_{room} = 18$ °C. The object takes 5 minutes to cool down from 70 °C to 57 °C. This problem can be modelled through the following differential equation:

$$\frac{d\theta}{dt} = -k(\theta - \theta_{room})$$

Determine;

(i) the general solution; and

(ii) time taken for the object to cool to $\theta = 40$ °C.

(12 marks)

CONFIDENTIAL

CONFIDENTIAL

Q5 (a) Solve the following differential equation:

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 0$$

(5 marks)

(b) Using the solution in Q5 (a) find the general solution to a force oscillation system represented by the following differential equation:

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = 2\sin(2x)$$

(10 marks)

(c) Obtain the particular solution for Q5 (b) to satisfy the following set of conditions:

$$y(0) = 1/2, \quad y'(0) = 0$$

(5 marks)

Q6 (a) Determine whether the following differential equation are exact or inexact.

(i)
$$x' = (1 - 2xt)/(t^2 + 3x^2)$$

(ii)
$$xy' + 2y = x^2 - x$$

(6 marks)

(b) If $L\{f(t)\} = F(s)$, find the Laplace transform for the following function:

$$f(t) = \frac{1 - \cos 2t}{t}$$

(6 marks)

(c) Determine whether the following periodic functions are EVEN or ODD

(i)
$$f(x) = x^2 + 1$$
 $[-2\pi \le x \le 2\pi]$

(ii)
$$g(x) = x^3 - 3x$$
 $[-2\pi \le x \le 2\pi]$

(iii)
$$h(x) = x^4 - 4x^2 \quad [-2\pi \le x \le 2\pi]$$

(iv)
$$f(x)g(x) [-2\pi \le x \le 2\pi]$$

(8 marks)

- END OF QUESTION -

4

CONFIDENTIAL

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION

: SEM 1 /20192020

PROGRAMME

: BDD

COURSE

: ENGINEERING MATHEMATICS II COURSE CODE

: BDA14103

FORMULAS

First Order Differential Equation

First Order Differential Equation		
Type of ODEs	General solution	
Linear ODEs: $y' + P(x)y = Q(x)$	$y = e^{-\int P(x)dx} \left\{ \int e^{\int P(x)dx} Q(x)dx + C \right\}$	
Exact ODEs: f(x,y)dx + g(x,y)dy = 0	$F(x,y) = \int f(x,y)dx$	
	$F(x,y) - \int \left\{ \frac{\partial F}{\partial y} - g(x,y) \right\} dy = C$	
Inexact ODEs: $M(x,y)dx + N(x,y)dy = 0$ $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$	$\int_{C} \left[\partial \left(\int_{C} iM(x,y) dx \right) \right]$	
Integrating factor; $i(x) = e^{\int f(x)dx} \text{ where } f(x) = \frac{1}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$	$\int iM(x,y)dx - \int \left\{ \frac{\partial \left(\int iM(x,y)dx \right)}{\partial y} - iN(x,y) \right\} dy = C$	
$i(y) = e^{\int g(y)dy}$ where $g(y) = \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$		

Characteristic Equation and General Solution for Second Order Differential Equation

Types of Roots	General Solution
Real and Distinct Roots: m_1 and m_2	$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$
Real and Repeated Roots: $m_1 = m_2 = m$	$y = c_1 e^{mx} + c_2 x e^{mx}$
Complex Conjugate Roots: $m = \alpha \pm i\beta$	$y = e^{ax}(c_1 \cos \beta x + c_2 \sin \beta x)$

Method of Undetermined Coefficient

g(x)	\mathcal{Y}_p
Polynomial: $P_n(x) = a_n x^n + + a_1 x + a_0$	$x^r(A_nx^n + \ldots + A_1x + A_0)$
Exponential: e^{ax}	$x'(Ae^{ax})$
Sine or Cosine: $\cos \beta x$ or $\sin \beta x$	$x^{r}(A\cos\beta x + B\sin\beta x)$

Note: $r ext{ is } 0, 1, 2 \dots$ in such a way that there is no terms in $y_p(x)$ has the similar term as in the $y_c(x)$.

CONFIDENTIAL

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION

: SEM 1/20192020

PROGRAMME

: BDD

COURSE

: ENGINEERING MATHEMATICS II COURSE CODE

: BDA14103

Method of Variation of Parameters

The particular solution for y'' + ay' + by = r(x), is given by $y(x) = u_1y_1 + u_2y_2$, where;

$$u_1 = -\int \frac{y_2 r(x)}{W} dx$$
 and $u_2 = \int \frac{y_1 r(x)}{W} dx$ $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1$

Laplace Transform

$\mathcal{L}\{f(t)\} = \int_{0}^{\infty} f(t)e^{-st}dt = F(s)$	
f(t)	F(s)
а	$\frac{a}{s}$
$t^n, n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
sin at	$\frac{a}{s^2 + a^2}$
cos at	$\frac{s}{s^2+a^2}$
sinh at	$\frac{a}{s^2 - a^2}$ $\frac{s}{s^2 - a^2}$ $F(s - a)$
$\cosh at$	$\frac{s}{s^2 - a^2}$
$e^{at}f(t)$	F(s-a)
$t^{n} f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n F(s)}{ds^n}$
H(t-a)	$\frac{e^{-as}}{s}$
f(t-a)H(t-a)	$e^{-as}F(s)$
$f(t)\delta(t-a)$	$e^{-as}f(a)$
y(t)	Y(s)
y'(t)	sY(s)-y(0)
y''(t)	$s^2Y(s)-sy(0)-y'(0)$

CONFIDENTIAL

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER / SESSION

: SEM 1 /20192020

PROGRAMME

: BDD

COURSE

: ENGINEERING MATHEMATICS II COURSE CODE

: BDA14103

Fourier Series

Fourier series expansion of periodic function with period 2 π

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

Half Range Series

$$a_0 = \frac{2}{L} \int_0^L f(x) dx$$

$$a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$b_n = \frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n\pi x}{L} dx$$

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

Trigonometric Series

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}\{\cos(\alpha - \beta) - \cos(\alpha + \beta)\}\$$

CONFIDENTIAL