

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER 1 SESSION 2019/2020

COURSE NAME

: ENGINEERING MATHEMATICS I

COURSE CODE

: BDA 14003

PROGRAMME CODE

: BDD

EXAMINATION DATE : DECEMBER 2019/JANUARY 2020

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF THREE (3) PAGES

CONFIDENTIAL.

- Q1 (a) Solve the domain and range of the following functions:
 - (i) $f(x) = \sqrt{6 + x x^2}$

(5 marks)

(ii)
$$h(x) = \frac{10}{\sqrt{16 - x^2}}$$

(5 marks)

- (b) Examine the limit for the functions of:
 - (i) $\lim_{x \to 8} \frac{2x^2 17x + 8}{8 x}$

(4 marks)

(ii)
$$\lim_{z \to 0} \frac{z}{3 - \sqrt{z + 9}}$$

(6 marks)

- Q2 (a) Calculate this function $f(x) = \sin(\sqrt{1 + \cos x})$ using the Chain Rule method (5 marks)
 - (b) Examine the derivative function of $x^2 \tan(y) + y^{10} \sec(x) = 2x$ using Implicit Differentiation method

(7 marks)

- (c) The amount of air in the balloon at any time, t is given by $v(t) = \frac{6\sqrt[3]{t}}{4t+1}$. Find the:
 - (i) rate of change of the volume, $\frac{dv}{dt}$

(4 marks)

(ii) balloon being filled or drained when t = 8 seconds?

(4 marks)

Q3 (a) Identify the suitable method for the integration of $\int_0^8 x \sqrt{1+x} dx$

(6 marks)

(b) Calculate the integrals of $\int_0^1 4x^2 e^{-2x} dx$

(8 marks)

CONFIDENTIAL

BDA 14003

(c) Examine the integral by using partial fraction method $\int \frac{x^2 + x + 3}{x + 2} dx$

(6 marks)

Q4 (a) Solve the arc length of the graph $y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}$ on the interval [0,1]

(10 marks)

(b) Examine the area of the surface that is generated by revolving the portion of the curve $y = x^2$ between x=1 and x=2 about the y-axis

(10 marks)

- Q5 (a) Let the function as $f(x) = \frac{x^2-1}{|x-1|}$
 - (i) Find $\lim_{x\to 1^+} f(x)$

(5 marks)

(ii) Find $\lim_{x\to 1^-} f(x)$

(5 marks)

(iii) Does $\lim_{x\to 1} f(x)$ exits?

(2 marks)

(b) Use L'Hospital's Rule for the limit of $\lim_{z\to 0} \frac{\sin(2z) + 7z^2 - 2z}{z^2(z+1)^2}$

(8 marks)

- Q6 (a) Solve the integral $\int \sqrt{5-4x-x^2}$ by using trigonometry substitution method (10 marks)
 - (b) Solve the volume of the solid that is obtained when the region under the curve $y = \sqrt{x}$ over the interval [1, 4] is revolved at about 90°, 180°, 270° and 360° of the x-axis (10 marks)