

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2018/2019

COURSE NAME

: TURBOMACHINERY

COURSE CODE

: BDE 40303

PROGRAMME

: BDD

EXAMINATION DATE

: DECEMBER 2018 / JANUARY 2019

DURATION

: 3 HOURS

INSTRUCTIONS

: ANSWER ONLY FIVE (5) FROM SIX

(6) QUESTIONS

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

1

BDE 40303

- Q1 (a) In wind turbine designs, the shaft power output (P_S) is determined to be a function of rotational speed (N), rotor diameter (D), air velocity (V), air density (ρ) . Using the Buckingham- π method of dimensional analysis:
 - (i) derive the non-dimensional parameters that express shaft power; and
 - (ii) show that the parameters in (i) above can be manipulated to become the power coefficient $C_p = \frac{P_S}{\rho AV^3}$ and tip speed ratio $\lambda = \frac{DN}{V}$ respectively.

(8 marks)

- (b) At 100 rpm, a radial flow turbine produces 32 kW of power under 16 m of head. A geometrically similar model of the turbine is developed and tested under the 6 m of head and was measured to produce 42 kW of power. If the model efficiency is 92%, determine:
 - (i) the rotational speed of the model;
 - (ii) the diameter ratio between the model and the prototype; and
 - (iii) the volume flow rate through the model.

(12 marks)

- A single stage, axial-flow gas turbine has nozzle exit angle of 68°. The stagnation temperature and pressure at the turbine stage inlet is 820 °C and 4.2 bar respectively. The static pressure at the exhaust is 1.0 bar. The turbine operates at 85% total-to-static efficiency at mean blade speed of 500 m/s. The specific heat ratio and specific heat for the gas are $\gamma = 1.333$ and $C_p = 1.147$ kJ/kgK. For this turbine, evaluate:
 - (i) the work done by the machine;
 - (ii) the axial velocity through the stage;
 - (iii) the total-to-total efficiency; and
 - (iv) the turbine's degree of reaction.

(20 marks)

- An axial-flow compressor is used to compress air from 1 bar and 295K through 7 reaction stages with a pressure ratio of 8. At 12000 rpm speed, each stage requires the same amount of power with 87% stage efficiency and 95% mechanical efficiency. The mean radius and blade height for the rotor is 23.0 cm and 7.5 cm respectively. The flow rate at the inlet is 12.7 m³/s. Taking the specific heat ratio as $\gamma = 1.4$ and specific heat of air to be $C_p = 1.0$ kJ/kgK, determine:
 - (i) the temperature rise per stage;
 - (ii) the inlet and exit flow angles of the first-stage rotor;
 - (iii) the required total power;
 - (iv) the adiabatic efficiency; and
 - (v) the compressor efficiency.

(20 marks)

Q4 (a) A small inward-flow gas turbine operates with a total-to-total efficiency of 90% at its design point. The stagnation pressure and temperature of the gas at the nozzle inlet are 310 kPa and 1145 K respectively. The flow at the exit of the turbine is diffused to 100 kPa with

BDE 40303

negligible velocity. The specific heat and specific heat ratio for the gas are $C_p = 1.147$ kJ/kgK and $\gamma = 1.333$ respectively. The Mach number at the nozzle exit is 0.9. Assuming that gas enters the blade radially and that there is no whirl at the blade exit, determine:

- (i) the blade tip speed at the nozzle exit; and
- (ii) the flow angle at the nozzle exit.

(10 marks)

- (b) Table Q4(b) shows the specifications of a small radial turbine. For this turbine, determine:
 - (i) the speed parameter (dimensionless speed);
 - (ii) the volume flow rate at the blade exit; and
 - (iii) the turbine power.

(10 marks)

- Q5 (a) A centrifugal compressor operates at 16000 rpm rotational speed. Air entering the compressor at a total temperature of 20 °C and a total pressure of 1.0 bar is compressed by a pressure ratio of 4.2 between the blade inlet and exit. The radial velocity component at the blade exit is 136 m/s and the isentropic efficiency of the compressor is 82%. The flow between the blade inlet and exit is assumed to be isentropic with the specific heat ratio equal to $\gamma = 1.4$ and specific heat of $C_p = 1.0$ kJ/kgK. For this compressor:
 - (i) draw the velocity triangle at the blade exit;
 - (ii) calculate the slip velocity; and
 - (iii) determine the slip factor.

(10 marks)

- (b) **Table Q5(b)** shows the specification data for a centrifugal air compressor. For this machine, evaluate:
 - (i) the adiabatic efficiency;
 - (ii) the exit air temperature; and
 - (iii) the required power input.

(10 marks)

BDE 40303

- Q6 (a) A Pelton wheel at a hydraulic power station runs at 305 rpm with 515 m available head. The turbine is of a single jet type with 200 mm nozzle diameter. The jet is deflected by 165° inside the bucket where its relative velocity is reduced by 12% through friction. The mechanical losses at the shaft is assumed to be 4% from the power supplied. For this hydraulic turbine operation, sketch the velocity triangle and determine:
 - (i) the water horsepower;
 - (ii) the net force exerted on the bucket;
 - (iii) the shaft power; and
 - (iv) the overall efficiency.

(12 marks)

- (b) A Kaplan runner develops 9000 kW under a head of 5.5 m with 85% mechanical efficiency of. The speed and flow ratios are 2.08 and of 0.68 respectively. The hub diameter is 1/3 that of the runner. Determine:
 - (i) the diameter of the runner;
 - (ii) the turbine rotational speed; and
 - (iii) the turbine specific speed.

(8 marks)

- END OF QUESTIONS -

BDE 40303

FINAL EXAMINATION

SEMESTER/SESSION: SEM I / 2018-2019

PROGRAMME: BDD

COURSE NAME:

TURBOMACHINERY

COURSE CODE: BDE 40303

Table Q4(b)

Turbine type	Radial
Rotor inlet tip diameter	92 mm
Rotor exit tip diameter	64 mm
Rotor exit hub diameter	26 mm
Absolute rotor exit to isentropic velocity ratio, C_3/C_{is}	0.447
Rotor to isentropic velocity ratio, U/C_{is}	0.707
Rotational speed	30500 rpm
Gas density at blade exit	1.75 kg/m ³

Table Q5(b)

Machine type	Centrifugal air compressor
Blade tip diameter	1.0 m
Rotational speed	5945 rpm
Air mass flow rate	28 kg/s
Static pressure ratio	2.2
Ambient pressure	1.0 bar
Ambient temperature	25 °C
Slip factor	0.90