

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2018/2019

COURSE NAME

: ENGINEERING MATHEMATICS III

COURSE CODE

: BDA 24003

PROGRAMME CODE

BDD

EXAMINATION DATE

: DECEMBER 2018/ JANUARY 2019

DURATION

3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

CONFIDENTIAL

BDA 24003

- Q1 (a) Given the vector-valued function $\mathbf{r}(t) = (3 + 2 \cos \omega t) \mathbf{i} + (2 + 2 \sin \omega t) \mathbf{j}$, for $0 \le t \le 2\pi$.
 - (i) unit tangent vector T(t), principle unit normal vector N(t), curvature κ , and radius of curvature ρ .
 - (ii) Sketch the graph of r(t) and $T(\frac{\pi}{4})$ in one coordinate system

(10 marks)

- (b) A particle moves along a path which its position vector $\mathbf{r}(t)$ is given as a function of time t by $\mathbf{r}(t) = \cos 2t \, \mathbf{i} + \sin 2t \, \mathbf{j} + 4t^2 \, \mathbf{k}$
 - (i) Determine the instantaneous velocity, speed and acceleration of the particle at time *t*.
 - (ii) Determine the time at which position vector is perpendicular to the acceleration vector.

(10 marks)

- Q2 (a) The scalar function given by $f(x, y) = x \cos y$. Find
 - (i) the gradient of f(x, y), and
 - (ii) the directional derivative of f(x, y) in the direction of unit vector $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$ (5 marks)
 - (b) Evaluate $\int_C (2y 3z)dx + (2x + z)dy + (y 3x)dz$ where C is line segment from the point (0, 0, 0) to (0, 1, 1). (7 marks)
 - (c) Let C be the boundary of first quadrant region bounded by the line y = x and curve $y = x^2$ oriented counterclockwise. Evaluate $\int_C xy \, dx + y^2 dy$ using Green's Theorem. (8 marks)

CONFIDENTIAL

BDA 24003

- Q3 (a) Suppose that $w = x^2 + y^2 z^2$ and $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \cos \theta$, $z = \rho \cos \phi$. Find the rate of change of w with respect to θ and ϕ . (5 marks)
 - (b) Analyze all relative maxima, relative minima and saddle points, if any for $f(x, y) = x^2 + xy + y^2 3x$. (5 marks)
 - (c) Given $\int_0^2 \int_0^{\sqrt{4-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{9-y^2-x^2}} \sqrt{x^2+y^2+z^2} dz dy dx$
 - i. Sketch the solid represented by the triple integral and its projection on xy-plane.
 - ii. Transform the integral to spherical coordinates. Then calculate the triple integral and show the answer in form of surd.

(10 marks)

- Q4 (a) Given function $f(y, z) = y^2 + 4z^2$.
 - (i) Sketch the contour map of z = 1, 6 and 10,
 - (ii) Sketch the graph.

(10 marks)

(b) Find the coordinate \overline{x} and \overline{z} for the centroid of a solid enclosed by surface $z = x^2$ and plane y = 0, y = 1 and z = 1. Assume that the solid has constant density 1.

(10 marks)

- Q5 (a) Evaluate $\iint_R x + y + 2 \ dxdy$, where R is the region inside the unit square in which $x + y \ge 0.5$. (5 marks)
 - (b) Sketch the region R in the xy-plane bounded by the curves $y^2 = 4x$ and y = 2x, and find its area. (5 marks)
 - (c) Given the triple integral $\iiint_R \sqrt{x^2 + y^2} \ dV$, where R is the region lying above the xy-plane, and below cone $z = 3 \sqrt{x^2 y^2}$.

3

- (i) Sketch the 3D-graph of the integral
- (ii) Evaluate the integral

(10 marks)

CONFIDENTIAL

BDA 24003

- **Q6** (a) Given the force field $\mathbf{F}(x,y,z) = (5/3)y^3 \mathbf{i} + 5xy^2 \mathbf{j} + 2 \mathbf{k}$
 - (i) Prove that F is conservative
 - (ii) By using formula $\nabla \emptyset = \mathbf{F}$, find a scalar potential \emptyset for \mathbf{F} .
 - (iii) Hence, compute the amount of work done against the force field F in moving an object from the point (1, 1, 1) to (2, 3, 4).

(10 marks)

(b) Let $\mathbf{F}(x,y,z) = z \mathbf{i} + y \mathbf{j} - x \mathbf{k}$ and oriented outward. Suppose that σ is the surface of the plane x + y + z = 2 contained within the triangle, with the vertices (2, 0, 0), (0, 2, 0) and (0, 0, 2) as shown in **Figure 6(b)**. Evaluate the surface integral.

(10 marks)

-END OF QUESTIONS -

SEMESTER / SESSION : SEM I / 2018/2019 COURSE NAME: ENGINEERING MATHEMATICS III PROGRAMME CODE: BDD

COURSE CODE

: BDA 24003

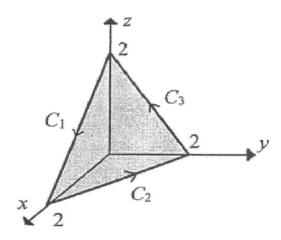


Figure 6(b)

SEMESTER / SESSION : SEM I / 2018/2019 COURSE NAME: ENGINEERING MATHEMATICS III

PROGRAMME CODE: BDD

COURSE CODE : BDA 24003

FORMULA

Total Differential

For function z = f(x, y), the total differential of z, dz is given by:

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

Relative Change

For function z = f(x, y), the relative change in z is given by:

$$\frac{dz}{z} = \frac{\partial z}{\partial x} \frac{dx}{z} + \frac{\partial z}{\partial y} \frac{dy}{z}$$

Implicit Differentiation

Suppose that z is given implicitly as a function z = f(x, y) by an equation of the form F(x, y, z) = 0, where F(x, y, f(x, y)) = 0 for all (x, y) in the domain of f, hence,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

Extreme of Function with Two Variables

$$D = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$$

a. If D > 0 and $f_{xx}(a,b) < 0$ (or $f_{yy}(a,b) < 0$)

f(x, y) has a local maximum value at (a, b)

b. If D > 0 and $f_{xx}(a,b) > 0$ (or $f_{yy}(a,b) > 0$)

f(x, y) has a local minimum value at (a, b)

c. If D < 0

f(x, y) has a saddle point at (a, b)

d. If D = 0

The test is inconclusive

Surface Area

$$= \iint\limits_{R} dS$$
$$= \iint\limits_{R} \sqrt{(f_x)^2 + (f_y)^2 + 1} dA$$

SEMESTER / SESSION : SEM I / 2018/2019 COURSE NAME: ENGINEERING MATHEMATICS III PROGRAMME CODE: BDD

COURSE CODE : BDA 24003

Polar Coordinates:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$x^2 + v^2 = r^2$$

where
$$0 \le \theta \le 2\pi$$

$$\iint\limits_{R} f(x,y)dA = \iint\limits_{R} f(r,\theta)rdrd\theta$$

Cylindrical Coordinates:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

where
$$0 \le \theta \le 2\pi$$

$$\iiint_{G} f(x, y, z)dV = \iiint_{G} f(r, \theta, z) r dz dr d\theta$$

Spherical Coordinates:

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

$$\rho^2 = x^2 + y^2 + z^2$$

where $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$

$$\iiint_{G} f(x, y, z)dV = \iiint_{G} f(\rho, \phi, \theta)\rho^{2} \sin \phi d\rho d\phi d\theta$$

In 2-D: Lamina

Given that $\delta(x, y)$ is a density of lamina

Mass,
$$m = \iint_{R} \delta(x, y) dA$$
, where

Moment of Mass

a. About x-axis,
$$M_x = \iint y \delta(x, y) dA$$

a. About x-axis,
$$M_x = \iint_R y \delta(x, y) dA$$

b. About y-axis, $M_y = \iint_R x \delta(x, y) dA$

SEMESTER / SESSION : SEM I / 2018/2019

PROGRAMME CODE: BDD

: BDA 24003

COURSE NAME: ENGINEERING MATHEMATICS III

COURSE CODE

Centre of Mass

Non-Homogeneous Lamina:

$$(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$$

Centroid

Homogeneous Lamina:

$$\overline{x} = \frac{1}{Area of} \iint_{R} x dA$$
 and $\overline{y} = \frac{1}{Area of} \iint_{R} y dA$

Moment Inertia:

a.
$$I_y = \iint x^2 \delta(x, y) dA$$

a.
$$I_{y} = \iint_{R} x^{2} \delta(x, y) dA$$

b.
$$I_{x} = \iint_{R} y^{2} \delta(x, y) dA$$

c.
$$I_o = \iint_R (x^2 + y^2) \delta(x, y) dA$$

In 3-D: Solid

Given that $\delta(x, y, z)$ is a density of solid

Mass,
$$m = \iiint_G \delta(x, y, z) dV$$

If $\delta(x, y, z) = c$, where c is a constant, $m = \iiint_C dA$ is volume.

Moment of Mass

a. About yz-plane,
$$M_{yz} = \iiint_{C} x \delta(x, y, z) dV$$

b. About xz-plane,
$$M_{xz} = \iiint_G y \delta(x, y, z) dV$$

C. About xy-plane,
$$M_{xy} = \iiint_G z \delta(x, y, z) dV$$

Centre of Gravity

$$(\bar{x}, \bar{y}, \bar{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)$$

SEMESTER / SESSION : SEM I / 2018/2019 COURSE NAME: ENGINEERING MATHEMATICS III

PROGRAMME CODE: BDD

COURSE CODE : BDA 24003

Moment Inertia

a. About x-axis,
$$I_x = \iiint_G (y^2 + z^2) \delta(x, y, z) dV$$

b. About y-axis,
$$I_y = \iiint_G (x^2 + z^2) \delta(x, y, z) dV$$

c. About z-axis,
$$I_z = \iiint_G (x^2 + y^2) \delta(x, y, z) dV$$

Directional Derivative

$$D_u f(x, y) = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot \mathbf{u}$$

Del Operator

$$\nabla = \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k}$$

Gradient of $\phi = \nabla \phi$

Let $\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$, hence,

The **Divergence** of $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$

The Curl of $\mathbf{F} = \nabla \times \mathbf{F}$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix}$$
$$= \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z} \right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z} \right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k}$$

SEMESTER / SESSION : SEM I / 2018/2019 COURSE NAME: ENGINEERING MATHEMATICS III

PROGRAMME CODE: BDD

COURSE CODE

: BDA 24003

Let C is smooth curve defined by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, hence,

The Unit Tangent Vector,
$$T(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

The Principal Unit Normal Vector,
$$N(t) = \frac{T'(t)}{\|T'(t)\|}$$

The **Binormal Vector**, $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$

Curvature

$$\kappa = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$$

Radius of Curvature

$$\rho = \frac{1}{\kappa}$$

Green's Theorem

$$\iint_{C} M dx + N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$$

Gauss's Theorem

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} dS = \iiint_{C} \nabla \cdot \mathbf{F} dV$$

Stoke's Theorem

$$\iint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} dS$$

Arc Length

If
$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
, $t \in [a, b]$, hence, the arc length,

$$s = \int_{a}^{b} || \mathbf{r}'(t) || dt = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt$$