

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2017/2018

COURSE NAME

CONTROL ENGINEERING

COURSE CODE

BDA30703

PROGRAMME

BDD

EXAMINATION DATE

DECEMBER 2017/ JANUARY 2018

DURATION

3 HOURS

INSTRUCTION

ANSWER FIVE(5) QUESTIONS

ONLY OUT OF SIX(6) QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

- Q1 (a) Explain the terms accuracy, sensitivity and linearity of an instrument. (6 marks)
 - (b) Propose a sensor that can be used to measure angular position of a shaft. Explain on the working principle with the help of suitable figure. (4 marks)
 - (c) Figure Q1(c) shows a circuit for differential amplifier.
 - (i) Explain two basic functions of the differential amplifier (2 marks)
 - (ii) Calculate output (V_0) of the circuit given the input $V_A = V_S$ and $V_B = 0$. Note that V_n is the noise voltage. (8 marks)
- Q2 (a) Use block diagram reduction techniques to obtain a single transfer function for the system shown below in **Figure Q2**. (9 marks)
 - (b) Referring to **Figure Q2**, obtain the transfer function, T(s) using Mason's rule technique. (10 marks)
 - (c) Compare the results obtained in (a) and (b). (1mark)
- Q3 (a) In modern control system describe what is a mathematical model. Give one example mathematical model for a mechanical system. (4 marks)
 - (b) Figure Q3(b) shows mechanical control systems which consists of two masses and two springs. A force F_a acts on the mass m, which causes the movement of X_1 and X_2 . The indication b_1 and b_2 is damping viscous between mass and floor.
 - (i) Draw free body diagram for both masses. (6 marks)
 - (ii) Derive the equation of motion for X_2 as a function of F_a . (10 marks)

CONFIDENTIAL

Q4 Consider the system with closed loop transfer function as:

$$G(s) = \frac{K}{s(s+0.5)(s^2+0.6s+10)}, H(s)=1$$

(i) Sketch the root locus for the system.

(15 marks)

- (ii) Observe that for small or large values of K the system is under damped and for medium values of K it is over damped. (5 marks)
- Q5 (a) Provide a sketch that shows how to measure both gain and phase margins using Bode diagram. (3 marks)
 - (b) The transfer function of an electric shredding machine system is given by;

$$G(s) = \frac{8000}{s(2s+20)(s+40)}$$

- (i) Sketch the Bode diagram for the system
- (ii) Determine the gain and phase margins from the Bode diagram sketched in section (b)(i). (17 marks)
- Consider the feedback control system shown below in which a proportional compensator is employed. A specification on the control system is that the steady-state error must be less than two per cent for constant inputs.

$$G(s) = \frac{2}{(s^3 + 4s^2 + 5s + 2)}; D(s) = K_p$$

- (i) Use a proportional controller K_p that satisfies this specification (10marks)
- (ii) If the steady-state criterion cannot be met with a proportional compensator, use a dynamic compensator $D(s) = 3 + K_I/s$. Find the range of K_I that satisfies the requirement of steady-state error. (10 marks)

- END OF QUESTION -

FINAL EXAMINATION SEMESTER/SESSION: I/2017/2018 PROGRAMME: BDD **COURSE: CONTROL ENGINEERING** COURSE CODE: BDA 30703 (V_s+V_n) $V_A(V_S)$ 4 Signal wires V_B(0 V) - (V_n) V₂ R₂ R_4 Figure Q1(c) $H_2(s)$ C(s) R(s) $G_1(s)$ $G_2(s)$ $G_3(s)$ $H_1(s)$ Figure Q2 TERBUKA X_1 X_2 \underline{k} k m_1 m_2 F_{α} 900000 b_1 b_2 Figure Q3 (b)

CONFIDENTIAL

OR, ZAMRI NORANAI Pensyarah Kanan Japaton Kejuruteraan Mekanik Fa⊁utti Kejuruteraan Mekanikai dan Pembuate Universiti Tun Hussein Onn Malaysia

FINAL EXAMINATION

SEMESTER/SESSION: I/2017/2018

PROGRAMME: BDD COURSE CODE: BDA 30703

COURSE : CONTROL ENGINEERING

REFERENCE

f	$\mathcal{L}_{t}\left[f\left(t\right)\right]\left(s\right)$	conditions
1	1 8	
t	$\frac{1}{s^2}$	
t ^R	1 + K ^S	$n \in \mathbb{Z} \ge 0$
t ^a	$\frac{\Gamma(a+1)}{s^{a+1}}$	$\mathbb{R}\left[a\right] > -1$
e ^{at}	<u>1</u> s-a	
cos (ω t)	$\frac{s}{s^2+\omega^2}$	$\omega \in \mathbb{R}$
$\sin(\omega t)$	$\frac{\omega}{s^2+\omega^2}$	$s > \mathbb{I}[\omega] $
cosh (ω t)	$\frac{s}{s^2-\omega^2}$	$s > \mathbb{R}[\omega] $
$\sinh(\omega t)$	$\frac{\omega}{s^2-\omega^2}$	$s > \mathbb{I}[\omega] $
$e^{at}\sin(bt)$	$\frac{b}{(s-\alpha)^2+b^2}$	$s > a + \mathbb{I}[b] $
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	$b \in \mathbb{R}$
$\delta(t-c)$	e ^{-c s}	
$H_c(t)$	$\begin{cases} \frac{1}{s} & \text{for } c \le 0 \\ \frac{e^{-c \cdot s}}{s} & \text{for } c > 0 \end{cases}$	
$J_0(t)$	$\frac{1}{\sqrt{s^2+1}}$	
$J_n(at)$	$\frac{\left(\sqrt{s^2 + a^2} - s\right)^n}{a^n \sqrt{s^2 + a^2}}$	$n \in \mathbb{Z} \ge 0$

$$C(s) = R(s) \cdot \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} T = \frac{1}{\left(\zeta - \sqrt{\zeta^2 - 1}\right) \omega_n}$$

TERBUKA

CONFIDENTIAL

TERBUKA

