

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2016/2017

COURSE NAME

: ENGINEERING MATHEMATICS IV

COURSE CODE

: BDA 34003

PROGRAMME CODE

: BDD

EXAMINATION DATE

: JUNE 2017

DURATION

: 3 HOURS

INSTRUCTION

PART A:

ANSWER FOUR (4) QUESTIONS

PART B:

ANSWER ONE QUESTION ONLY

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

PART A: ANSWER ALL QUESTIONS

The heat transfer performance of a new conductor material is under inspection. The material is fully insulated such that the heat transfer is only one dimensional in axial direction (*x*-axis). The initial temperature of the material is at room temperature of 25°C. At one end (point A) is heated while another end (point E) is attached to a cooler system, as shown in **Figure Q1**.

The unsteady state heating equation follows a heat equation

$$\frac{\partial T}{\partial t} - K \frac{\partial^2 T}{\partial x^2} = 0,$$

where K is thermal diffusivity of the material and x is the longitudinal coordinate of the bar. The thermal diffusivity of the steel is given as K = 13 mm²/s, $\Delta x = h = 10mm$ and $\Delta t = k = 4s$.

(a) Draw finite difference grid to predict the temperature of all points up to 8 seconds and label all unknown temperatures in the grid.

(4 marks)

- (b) From the grid illustration in **Q1(a)**, propose simultaneous equations based on Implicit Crank Nicolson method to determine the temperature of point A, B, C, D, E and F.

 (8 marks)
- (c) Determine the unknown temperatures of each point, at t = 4 second. (8 marks)

Q2 (a) Given the nonlinear function

$$f(x) = -2 + 6x - 4x^2 + 0.5x^3$$

- (i) Perform two iterations of Newton Raphson method to locate the root for f(x) with different initial guess of
 - $x_0 = 4$
 - $x_0 = 4.43$

(5 marks)

(ii) From the obtained answers, how is the initial guess related to the significant difference in the answer?

(3 marks)

(b) A constant temperature, pressure-volume thermodynamic process has the following data:

Table 1

Pressure (kPa) 420 368 333 316 326 312 242 207 Volume (m³) 0.5 2 3 4 6 8 10 11	We	T	T		T STOLE I				
		420	368	333	316	326	312	242	207
		0.5	2	3	4	6	8	10	11

Knowing that

$$Work = \int p \, dV$$

where p is pressure and V is volume.

(i) Analyze the work done using rectangular rule.

(4 marks)

(ii) If the recorded data is unequally spaced, propose a suitable combination of the rectangular rule, Simpon's 1/3 rule and Simpson's 3/8 rule that can be used to analyze the work done.

(4 marks)

(iii) If the volume $V = 1.88 \text{ m}^3$, estimate the pressure at using three points Lagrange interpolation polynomial.

(4 marks)

CONFIDENTIAL

Q3. Analyse the following system of linear equations to find the unknown variables using Thomas Algorithm.

$$\begin{array}{rcl}
x_1 & +2x_2 & = 9 \\
6x_1 & +6x_2 & -8x_3 & = 1 \\
& -3x_2 & +x_3 & = 0
\end{array}$$

(20 marks)

Q4. Determine the largest eigenvalue and its corresponding eigenvector for the system matrix A, by using power method.

$$A = \begin{pmatrix} 2 & 2 & 10 \\ 8 & 3 & 4 \\ 10 & 4 & 5 \end{pmatrix}$$

Use the initial value $\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}^T$ and calculate until the convergence less than 0.005.

(20 marks)

CONFIDENTIAL

BDA 34003

TERBUKA

PART B: ANSWER ONE QUESTION ONLY

Q5. The period of vibration, *T* of a spring-supported mass of *m* is recorded from an experimental series and shown in Table Q5. The experiment conducted to determine the stiffness of the spring.

Table Q5

m (kg)	0.5	1.0	1.5	2.0	2.5	3.0	3.5
T(s)	0.125	0.17	0.2	0.235	0.24	0.27	0.28

(a) Predict the value for T(2.25) using Newton's Divided Difference.

(7 marks)

(b) Consider an ordinary differential equation

$$\frac{dy}{dx} - \frac{xy}{1+x^2} = 0$$

with initial condition y(2) = 5, $2 \le x \le 3$ and h = 0.25

(i) Solve the initial value problem using Euler method.

(10 marks)

(ii) Calculate the absolute error for each approximation if the exact solution is given by

$$y(x) = \sqrt{5(1+x^2)}$$

(3 marks)

Q6. Table Q6 gives corresponding values of two quantities x and y.

Table Q6

X	6	6.5	7	7.5	8	8.5	9
У	4.10	4.25	4.38	4.54	4.66	4.80	4.96

(a) Predict the value for y(7.25) using Lagrange interpolating polynomial of fourth order.

(7 marks)

(b) Consider an initial value problem (IVP)

$$x\frac{dy}{dx} - y - \frac{x}{x+1} = 0$$

with initial condition y(1) = 0, $1 \le x \le 1.4$ and h = 0.1

(i) Solve the initial value problem using fourth order Runge-Kutta method.

(10 marks)

(ii) Calculate the absolute error for each approximation if the exact solution is given by

$$y(x) = x \ln\left(\frac{2x}{x+1}\right)$$

(3 marks)

END OF QUESTIONS

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2016/2017

COURSE NAME

: ENGINEERING MATHEMATICS IV

PROGRAMME CODE: BDD

COURSE CODE : BDA 34003

FIGURE Q1

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2016/2017

COURSE NAME

: ENGINEERING MATHEMATICS IV

PROGRAMME CODE : BDD

COURSE CODE : BDA 34003

Useful Formulas

Implicit Crank Nicolson Method

Thomas Algorithm:

i	1	2	•••	n
d_i				
e_i				
C_i				
b_i				
$\alpha_1 = d_1$				
$\alpha_i = d_i - c_i \beta_{i-1}$				
$\beta_i = \frac{e_i}{\alpha_i}$				
$y_1 = \frac{b_1}{\alpha_1}$ $y_i = \frac{b_i - c_i y_{i-1}}{\alpha_i}$				
$y_i = \frac{b_i - c_i y_{i-1}}{\alpha_i}$				
$x_n = y_n$ $x_i = y_i - \beta_i x_{i+1}$				

CONFIDENTIAL

BDA 34003

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2016/2017

COURSE NAME

: ENGINEERING MATHEMATICS IV

PROGRAMME CODE : BDD

COURSE CODE : BDA 34003

Useful Formulas

Fourth-order Runge-Kutta method:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = hf(x_i, y_i)$$

where
$$k_1 = hf(x_i, y_i)$$
 , $k_2 = hf(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$

$$k_3 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}\right)$$
 , $k_4 = hf(x_i + h, y_i + k_3)$

$$k_4 = hf(x_i + h, y_i + k_3)$$