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PART A
Q1 (a) By using the method of Variation Parameter, solve the general solution for:

(b)

2 W

(b)

(©)

(d)

y" +y =tan(x)

( Note: tan(x) = sin(x)/cos(x) and sin?(x) + cos?(x) = 1)
(10 marks)

By using the method of Undetermined Coefficients, obtain the general
solution for:

y//_2y1_3y:1_x2

(10 marks)
3 . ) .
Express — in partial fraction.
s
(8 marks)
Find the Laplace transform of f(t) = cos(2t).
(2 marks)
By using the obtained result in Q2(b), show that
L B O —3—H(t —4)—31:1(;—4) cos(2(t—4))
s(s” +4) 4 4 '
(3 marks)

By using the obtained results in Q2 (a)-(c), solve the following initial value
problem.

y'+ay=f(@), »0)=1 »'(0)=0,with

0, for 0<t<4

F0= {3, for t>4

(7 marks)
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PART B
Q3 (a) Solve the differential equation:
dy ax
TaxT YT X1

(6 marks)

(b) By using the method of Laplace transform, solve the initial value problem of:

d’y _dy .
ZEJ—C‘E— 62};‘}’ 4y = 2e

with the initial condition y(0) = y'(0)=0.

(14 marks)
Q4 (a) Solve the differential equation:
dy x?~In(y?
o= Xe
(6 marks)
(b) Solve-z—z+ ytanx =secx if y =5when x = 0.
(8 marks)
(c) Find the general solution for the following equation:
y" =8y’ +16y =0,
With the initial condition y(0) = 2, y'(0) = 2
(6 marks)
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Q5 A 3 cm length silver bar with a constant cross section area 1 cm? (density 10 g/cm?,
thermal conductivity 1.5 cal/(cm sec®°C), specific heat 0.075 cal/(g °C), is perfectly
insulated laterally, with ends kept at temperature 0°C and initial uniform
temperature f(x) = 25 °C.

The heat equation is:
Fu_1au
ox* ot
(a) Show thatc” =2.
(2 marks)

(b) By using the method of separation of variable, and applying the boundary
condition, prove that
o _2n27r2t
u(x,t)= an sin—’%r—)fe ?

n=1

where b, is an arbitrary constant.

(12 marks)

(c) By applying the initial condition, find the value of b,. ,
(6 marks)

CONFIDENTIAL



TERBUKA

CONFIDENTIAL
BDA 14103
Q6 A periodic function is defined as:
-1, —-7<x<0
f)=20 , x=0
1 , O<x<nm

f(x)=f(x+2m)

(a) Determine whether the given function is even, odd or neither.
(2 marks)

(b) Prove that the corresponding Fourier series to this periodic function is given

by:
Z sin[(2n — l)x], Cmexen
— 2n—1
(12 marks)
(c) By choosing an appropriate value for x, show that
V4 I 1 1
—=l-at—=——t..
-4 3 5 7
(6 marks)

- END OF QUESTIONS -
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MATHEMATICS Il

FORMULAS
First Order Differential Equation

Type of ODEs

General solution

Linear ODEs:

Exact ODEs:

fC,y)dx + g(x,y)dy =0 F(x,y) = ff(x, y)dx

F(x,y) —f{g—i—g(x,y)}dy =C

Characteristic Equation and General Solution for Second Order Differential Equation

Types of Roots General Solution
Real and Distinct Roots: y=ce™ +c,e™
m, and m,
Real and Repeated Roots:

_ mx mx
y=ce™ +c,xe
m=m,=m

Complex Conjugate Roots: y=€e"(c, cos fx+c, sin fx)
m=aztif

Method of Undetermined Coefficient

g(x) Y,
Polynomial:
P(x)=ax"+..+ax+a, X (Ax"+..+A4x+4)
Exponential:
e” x'(Ae™)
Sine or Cosine:
cos fBx or sin fx x"(Acos Bx+ Bsin Bx)

Note: ris 0, 1,2 ... in such a way that there is no terms in Y, (x) has the similar term as in the y, (x).
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Method of Variation of Parameters
The particular solution for y"+by'+cy = g(x) (b and ¢ constants) is given by y(x)=u,y, +u,y,

, where
ul :“I 7289 4.
W

w = [28D
==

Where
W= y1' y2'
yl yZ

Laplace Transform

Lif@)}=]f(@6)e"dt=F(s)
JAO) F(s)
“ g
N
t",n=1,23,.. n!
Sn+l
BN
s—a
sin at a
s’ +a’
cosat s
s’ +a’
sinh at a
52 -—az
cosh at s
RN
e 1(¢) F(s—a)
() n=123,. Ciy CFO
ds
H(t—a) e
S
ft—a)H(t-a) e “F(s)
f(®)o(t—a) e“f(a)
y() Y(s)
() sY(s)—y(0)
¥(@) s*Y(s)—sy(0)— y'(0)
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Fourier Series
Fourier series expansion of periodic function with period 2 7

a=— | fds

n

a,= L J' f(x)cos nxdx
7T -

f(x)= -2-a0 +Zan cosnx+an sinnx
n=1 n=1
Half Range Series
2 L
%=z!fqu
2% nwx
=— cos——d.
L!ﬂﬂ -
X nrx
b == sin ——dx
: Lfﬂﬂ .

f(x)———a0+Za cos————+Zb m—L—

CONFIDENTIAL






