

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2016/2017**

TERBUKA

COURSE NAME

: ENGINEERING MATHEMATICS III

COURSE CODE

: BDA24003

PROGRAMME

: 2 BDD

EXAMINATION DATE : DISEMBER 2016 / JANUARY 2017

DURATION

: 3 HOURS

INSTRUCTION

: A) ANSWER ALL QUESTIONS IN

SECTION A

B) ANSWER TWO (2) QUESTIONS

IN SECTION B

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

SECTION A

- Q1 (a) A closed box has a dimension of 30 cm, 41 cm and 53 cm, respectively with the possible error of 0.2 cm. Use partial derivatives to estimate the maximum possible error by calculating the following:
 - (i) Surface area of the box

(5 marks)

(ii) Volume of the box

(5 marks)

(b) Sketch the domain of the following function $f(x,y) = \frac{x-2y}{x+2y}$.

(5 marks)

(c) Sketch the graph of the following function $f(x,y) = 8 - \sqrt{4x^2 + y^2}$.

(5 marks)

TERBUKA

Q2 (a) Evaluate $\int_{1}^{2} \int_{0}^{\frac{\pi}{4}} 2x sec^{2} y dy dx$

(5 marks)

(b) Evaluate $\iint 2xy + y^2 dA$ if R is a region in a triangle with vertices (0,0), (1,0) and (1,2).

(5 marks)

(c) Find area of region R between $y = \cos x$ and $y = \sin x$ over interval $0 \ll x \ll \frac{\pi}{4}$.

(5 marks)

(d) A lamina bounded by x-axis, x=1 and the curve $y^2 = x$ has density $\delta(x,y) = x + y$. Calculate its total mass.

(5 marks)

Q3 (a) Sketch the graph of the vector function $\mathbf{r}(t) = (t-1)\mathbf{i} + t^2\mathbf{j}$ by indicating the direction of the vector.

(6 marks)

(b) Obtain the tangent vector at $t = \pi$ if $\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + \sin t \mathbf{k}$.

(8 marks)

(c) Sketch the curvature of a line $\mathbf{r}(s) = (3 - 3s/5) \mathbf{i} + 4s/5 \mathbf{j}$.

(6 marks)

TERBUKA

CONFIDENTIAL

SECTION B

Q4 (a) Integrate $\int_{0}^{\frac{\pi}{3}} \int_{0}^{\cos \theta} \int_{0}^{\phi} \rho^{2} \sin \theta d\rho d\phi d\theta$

(7 marks)

(b) Evaluate the volume of the solid that enclosed by y = x2, z + y = 1, z = 0 and xz-plane and yz-plane.

(6 marks)

(c) The solid bounded above by plane z = 1 and below by right circular cone $z = \sqrt{x^2 + y^2}$ has density $\delta(x, y, z) = 2$. Evaluate the moment about the xy-plane of the solid.

(7 marks)

Q5 (a) Given $\mathbf{F} = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$ is a vector field. Prove that \mathbf{F} is conservative.

TERBUKA

(6 marks)

(b) Evaluate outward unit normal for the plane, x + y + z = 1.

(6 marks)

(c) By using Green Theorem, evaluate $\int_{C}^{\infty} x^{4} dx + xy dy$ where C is the triangular curve consisting of the line segments from (0,0) to (1,0), from (1,0) to (0,1) and from (0,1) to (0,0).

(8 Marks)

- Q6 (a) By using Gauss Theorem, evaluate surface integral of \mathbf{F} over all surfaces of the cube x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1 if $\mathbf{F} = x \mathbf{i} + y \mathbf{j} + 2z \mathbf{k}$. (10 marks)
 - (b) Evaluate $\int_{c}^{\mathbf{F} \cdot d\mathbf{r}}$ by using Stokes Theorem for $\mathbf{F} = \mathbf{z}^2 \mathbf{i} + 2\mathbf{x} \mathbf{j} \mathbf{y}^3 \mathbf{k}$ with C is the circle $\mathbf{x}^2 + \mathbf{y}^2 = 1$ in the xy-plane with counterclockwise orientation looking down the positive z-axis.

(10 marks)

- END OF QUESTION -

CONFIDENTIAL

SEMESTER/SESSION: SEM 1/2016/2017

COURSE NAME

: ENGINEERING MATHEMATICS III

PROGRAMME: 2 BDD COURSE CODE: BDA 24003

FORMULAE

Total Differential

For function z = f(x, y), the total differential of z, dz is given by:

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

Relative Change

For function z = f(x, y), the relative change in z is given by:

$$\frac{dz}{z} = \frac{\partial z}{\partial x} \frac{dx}{z} + \frac{\partial z}{\partial y} \frac{dy}{z}$$

Implicit Differentiation

Suppose that z is given implicitly as a function z = f(x, y) by an equation of the form F(x, y, z) = 0, where F(x, y, f(x, y)) = 0 for all (x, y) in the domain of f, hence,

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

Extreme of Function with Two Variables

$$D = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

TERBUKA

- a. If D > 0 and $f_{xx}(a,b) < 0$ (or $f_{yy}(a,b) < 0$) f(x,y) has a local maximum value at (a,b)
- b. If D > 0 and $f_{xx}(a,b) > 0$ (or $f_{yy}(a,b) > 0$) f(x,y) has a local minimum value at (a,b)
- c. If D < 0f(x, y) has a saddle point at (a, b)
- d. If D = 0The test is inconclusive

Surface Area

Surface Area =
$$\iint_{R} dS$$

= $\iint_{R} \sqrt{(f_{x})^{2} + (f_{y})^{2} + 1} dA$

SEMESTER/SESSION: SEM 1/2016/2017

COURSE NAME : ENGINEERING MATHEMATICS III

PROGRAMME: 2 BDD

TERBUKA

COURSE CODE: BDA 24003

Polar Coordinates:

$$x = r\cos\theta$$

$$y = r \sin \theta$$

$$x^2 + y^2 = r^2$$

where $0 \le \theta \le 2\pi$

$$\iint\limits_R f(x,y)dA = \iint\limits_R f(r,\theta)rdrd\theta$$

Cylindrical Coordinates:

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z$$

where $0 \le \theta \le 2\pi$

$$\iiint\limits_{G} f(x,y,z) dV = \iiint\limits_{G} f(r,\theta,z) r dz dr d\theta$$

Spherical Coordinates:

$$x = \rho \sin \phi \cos \theta$$

$$y = \rho \sin \phi \sin \theta$$

$$z = \rho \cos \phi$$

$$\rho^2 = x^2 + y^2 + z^2$$

where $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$

$$\iiint_{G} f(x, y, z) dV = \iiint_{G} f(\rho, \phi, \theta) \rho^{2} \sin \phi d\rho d\phi d\theta$$

In 2-D: Lamina

Given that $\delta(x, y)$ is a density of lamina

Mass,
$$m = \iint_{R} \delta(x, y) dA$$
, where

Moment of Mass

a. About x-axis,
$$M_x = \iint y \delta(x, y) dA$$

a. About x-axis,
$$M_x = \iint_R y \delta(x, y) dA$$

b. About y-axis, $M_y = \iint_R x \delta(x, y) dA$

SEMESTER/SESSION: SEM 1/2016/2017

COURSE NAME

: ENGINEERING MATHEMATICS III

PROGRAMME: 2 BDD COURSE CODE: BDA 24003

Centre of Mass

Non-Homogeneous Lamina:

$$(x, y) = \left(\frac{M_y}{m}, \frac{M_x}{m}\right)$$

Centroid

Homogeneous Lamina:

$$\overline{x} = \frac{1}{Area \ of} \quad R \iint_{R} x dA \text{ and } \overline{y} = \frac{1}{Area \ of} \quad R \iint_{R} y dA$$

Moment Inertia:

a.
$$I_{y} = \iint_{P} x^{2} \delta(x, y) dA$$

b.
$$I_x = \iint y^2 \delta(x, y) dA$$

b.
$$I_{x} = \iint_{R} y^{2} \delta(x, y) dA$$
c.
$$I_{o} = \iint_{R} (x^{2} + y^{2}) \delta(x, y) dA$$

TERBUKA

In 3-D: Solid

Given that $\delta(x, y, z)$ is a density of solid

Mass,
$$m = \iiint_{C} \delta(x, y, z) dV$$

If $\delta(x, y, z) = c$, where c is a constant, $m = \iiint_{z} dA$ is volume.

Moment of Mass

a. About yz-plane,
$$M_{yz} = \iiint_G x \delta(x, y, z) dV$$

b. About xz-plane,
$$M_{xz} = \iiint_C y \delta(x, y, z) dV$$

c. About xy-plane,
$$M_{xy} = \iiint_C z \delta(x, y, z) dV$$

Centre of Gravity

$$(\overline{x}, \overline{y}, \overline{z}) = \left(\frac{M_{yz}}{m}, \frac{M_{xz}}{m}, \frac{M_{xy}}{m}\right)$$

SEMESTER/SESSION: SEM 1/2016/2017

COURSE NAME

: ENGINEERING MATHEMATICS III

PROGRAMME: 2 BDD COURSE CODE: BDA 24003

Moment Inertia

a. About x-axis,
$$I_x = \iiint_G (y^2 + z^2) \delta(x, y, z) dV$$

b. About y-axis,
$$I_y = \iiint_C (x^2 + z^2) \delta(x, y, z) dV$$

c. About z-axis,
$$I_z = \iiint_G (x^2 + y^2) \delta(x, y, z) dV$$

Directional Derivative

$$D_u f(x, y) = (f_x \mathbf{i} + f_y \mathbf{j}) \cdot \mathbf{u}$$

Del Operator

$$\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$$

Gradient of $\phi = \nabla \phi$

Let
$$\mathbf{F}(x, y, z) = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$$
, hence,

The **Divergence** of
$$\mathbf{F} = \nabla . \mathbf{F} = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial P}{\partial z}$$

The **Curl** of $\mathbf{F} = \nabla \times \mathbf{F}$

TERBUKA

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & P \end{vmatrix}$$
$$= \begin{pmatrix} \frac{\partial P}{\partial x} & \frac{\partial N}{\partial x} \\ \frac{\partial N}{\partial x} & \frac{\partial N}{\partial x} \\ \frac{\partial N}{\partial x} & \frac{\partial N}{\partial x} & \frac{\partial N}{\partial x} \\ \frac{\partial N}{\partial x} & \frac{\partial N}{\partial x} & \frac{\partial N}{\partial x} & \frac{\partial N}{\partial x} \\ \frac{\partial N}{\partial x} & \frac{\partial N}$$

$$= \left(\frac{\partial P}{\partial y} - \frac{\partial N}{\partial z}\right) \mathbf{i} - \left(\frac{\partial P}{\partial x} - \frac{\partial M}{\partial z}\right) \mathbf{j} + \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) \mathbf{k}$$

SEMESTER/SESSION: SEM 1/2016/2017

COURSE NAME : ENGINEERING MATHEMATICS III

PROGRAMME: 2 BDD COURSE CODE: BDA 24003

Let *C* is smooth curve defined by $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$, hence,

The Unit Tangent Vector,
$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}$$

The **Principal Unit Normal Vector**,
$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

The **Binormal Vector**, $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$

Curvature

$$\kappa = \frac{\parallel \mathbf{T}'(t) \parallel}{\parallel \mathbf{r}'(t) \parallel}$$

Radius of Curvature

$$\rho = \frac{1}{\kappa}$$

Green's Theorem

$$\iint_{C} M dx + N dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$$

Gauss's Theorem

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_{G} \nabla \cdot \mathbf{F} \, dV$$

TERBUKA

Stoke's Theorem

$$\iint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$$

Arc Length

If
$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
, $t \in [a,b]$, hence, the arc length,

$$s = \int_{a}^{b} || \mathbf{r}'(t) || dt = \int_{a}^{b} \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt$$