

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2015/2016

COURSE NAME	:	FLIGHT MECHANICS
COURSE CODE	•	BDU20603
PROGRAMME	:	2BDC
EXAMINATION DATE	:	JUNE 2016/JULY 2016
DURATION	:	3 HOURS
INSTRUCTION	:	ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF THREE (3) PAGES

CONFIDENTIAL

CONFIDENTIAL

- Q1 Given an airplane having data as follow:
 - Aircraft weight W = 80000 N
 - Wing area reference $S = 24 \text{ m}^2$
 - Drag polar coefficients C_D : $C_D = 0.02 + 0.06 C_L^2$
 - The maximum lift coefficients $C_{Lmax} = 1.6$
 - Engine Thrust T = 180000 N

The atmospheric data gives:

- At sea level, the air density $\rho = \rho_{S.L} = 1.225 \frac{\text{kg}}{\text{m}^3}$ and
- at altitude h = 10000 m $\rho = \rho_{10000} = 0.413 \frac{\text{kg}}{\text{m}^3}$.

Calculate :

- (i) Stalling speeds at sea level and at 10 km altitude.
- (ii) Lift and drag coefficient at the (C_D / C_L) min and $(C_D / C_L)^{3/2}$ min respectively (10 marks)
- (iii) The required minimum thrust Trmin, the required minimum power Prmin, if the aircraft flies at sea level

(10 marks)

(10 marks)

(5 marks)

- (iv) Maximum and minimum speed in steady level flight at sea level.
- Q2 An airplane with aircraft weight W = 180000 N has a wing area of 45 m² and drag polar given by $C_D = 0.017 + 0.05C_L^2$. This airplane flies at the flight speed 540 km per hour and flight altitude h = 3000 m. The air density ρ at h = 3000 m is equal to 0.909 kg/m³. If at this flight speed, aircraft has a rate of climb 2000 m/minute, determine the thrust and power which are required to fly in this flight condition.

(20 marks)

- Q3 A glider weighing 4905 N has a wing area of 25 m², $C_{DO} = 0.012$, wing aspect ratio A = 16 and efficiency Oswald e = 0.87. Determine:
 - (i) The minimum angle of glide, minimum rate of sink and corresponding speeds under sea level standard conditions
 - (ii) The greatest duration of flight and the greatest distance that can be covered when glided from a height of 300 m. Neglect the changes in density during glide. Assume air density $\rho = 1.225 \text{ kg/m}^3$.

(20 marks)

CONFIDENTIAL

2

CONFIDENTIAL

BDU20603

Q4 A jet airplane having a weight of 441 450 N and wing area of 110 m^2 has a tricycle type landing gear. Its C_{Lmax} with flaps is 2.7 and other data as given as follows :

The take-off speed V₁ = 1.16 V_{stall} The transition speed V₂ = 1.086 V₁ The lift coefficient C_L during ground run is 1.15 The drag polar with landing gear and flaps is C_D = $0.044 + 0.05C_L^2$ Thrust variation during take-off can be approximated as : T = 128500 - 0.0929 V² where V is the km/hour gravitational acceleration g = 9.8 m/sec.²

Take-off takes place from a level and dry concrete runway (μ =0.02).

Determine:

i. The ground run distance S_1 and the required time for ground run t_1 .

(10 marks)

ii. The transition distance S_2 and the required time for the transition phase t_2 (10 marks)

Iii The climb distance to reach 15 m screen height and the time taken for it.

(5 marks)

- END OF QUESTION -