

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II **SESSION 2015/2016**

COURSE NAME

ENGINEERING TECHNOLOGY

MATHEMATICS II

COURSE CODE

: BDU 11003

PROGRAMME CODE : BDC / BDM

EXAMINATION DATE : JUNE / JULY 2016

DURATION

3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS IN

PART A AND THREE (3) QUESTIONS IN PART B.

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

PART A

Q1 A periodic function f(x) is defined by

$$f(x) = \begin{cases} 1 & , -1 \le x < 0, \\ 1 - x, & 0 \le x < 1, \end{cases}$$

and

f(x) = f(x+2).

(a) Sketch the graph of f(x) over $-3 \le x \le 3$.

(2 marks)

(b) Show that the Fourier coefficients corresponding to f(x) are

$$a_0 = \frac{3}{2}, \ a_n = \begin{cases} \frac{2}{n^2 \pi^2}, \ n \text{ is odd} \\ 0, \ n \text{ is even} \end{cases} \text{ and } b_n = \begin{cases} -\frac{1}{n\pi}, \ n \text{ is odd} \\ \frac{1}{n\pi}, \ n \text{ is even} \end{cases}.$$

(15 marks)

(c) Write the Fourier series of f(x) by giving your answers for the first three nonzero terms of a_n and b_n .

(3 marks)

Q2 Given the heat equation

$$\frac{\partial u}{\partial t} = 0.4 \frac{\partial^2 u}{\partial t^2}$$
, for $0 < x < 1$,

with the boundary conditions $u(0,t) = e^{-t}$ and u(1,t) = t for t > 0. The initial condition is given by u(x,0) = 2x for $0 \le x \le 1$.

- (a) Draw a grid for this problem by taking $\Delta x = h = 0.2$ and $\Delta t = k = 0.25$. (3 marks)
- (b) Write the partial differential equation in finite-difference form where

$$\frac{\partial u_{i,j}}{\partial t} = c^2 \frac{\partial^2 u_{i,j}}{\partial x^2}$$

is approximated by

$$\frac{u_{i,j+1}-u_{i,j}}{k}=c^2\frac{u_{i-1,j}-2u_{i,j}+u_{i+1,j}}{h^2}.$$

(3 marks)

(c) By using the finite-difference method, find u(x, 0), u(x, 0.25) and u(x, 0.5).

(14 marks)

PART B

Q3 (a) Solve

$$(3x^2 - 2xy + e^y - ye^{-x}) dx + (2y - x^2 + e^{-x} + xe^y) dy = 0$$

with initial value y(0) = 1.

(11 marks)

(b) According to Newton's law of cooling, the rate at which a body cools is given by the equation

$$\frac{dT}{dt} = -k(T - T_s),$$

where T_s is the temperature of the surrounding medium, k is a constant and t is the time in minutes. If the body cools from 100°C to 60°C in 10 minutes with the surrounding temperature of 20°C, how long does it need for the body to cool from 100°C to 25°C.

(8 marks)

Q4 (a) By using an appropriate method, solve

$$y'' - 4y = 3x + e^{2x}$$

with
$$y(0) = 0$$
 and $y'(0) = 1$.

(13 marks)

(b) A mass of 20.4 kg is suspended from a spring with a known spring constant of 29.4 N/m. The mass is set in motion from its equilibrium position with an upward velocity of 3.6m/s. The motion can be described in the differential equation

$$\ddot{x} + \frac{k}{m}x = 0$$

where m is the mass of the object and k is the spring constant.

- (i) Determine the initial conditions.
- (ii) Find an equation for the position of the mass at any time t.

(7 marks)

Q5 (a) Find the Laplace transform for each of the following function:

- $(2+t^3)e^{-2t}$. (i)
- $\sin(t-2\pi)H(t-2\pi).$ (ii)
- (iii) $\sin 3t \ \delta(2t-\pi)$.

(10 marks)

(b) Consider the periodic function

$$f(t) = \begin{cases} t, & 0 \le t < 1 \\ 1 - t, & 1 \le t < 2 \end{cases}$$

with f(t) = f(t+2).

Sketch the graph of f(t) and find its Laplace transform's.

(10 marks)

Q6 (a) (i) Find the inverse Laplace transform of

$$\frac{s+3}{s^2-6s+13}.$$

(ii) From (a)(i), find

$$\mathcal{L}^{-1}\left\{\frac{(s+3)e^{-\frac{1}{2}\pi s}}{s^2-6s+13}\right\}.$$

(8 marks)

(b) (i) **Express**

$$\frac{1}{(s-1)(s-2)^2}$$
 in partial fractions and show that

$$\mathcal{L}^{-1}\left\{\frac{1}{(s-1)(s-2)^2}\right\} = e^t - e^{2t} + te^{2t}.$$

(ii) Use the result in (i) to solve the differential equation

$$y' - y = te^{2t}$$

which satisfies the initial condition of y(0) = 1.

(12 marks)

-END OF QUESTION-

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2015/2016

COURSE NAME

: ENGINEERING TECHNOLOGY

MATHEMATICS II

PROGRAMME: BDC/BDM COURSE CODE: BDU 11003

<u>Formulae</u> Characteristic Equation and General Solution

Case	Roots of the Characteristic Equation	General Solution
1	m_1 and m_2 ; real and distinct	$y = Ae^{m_1x} + Be^{m_2x}$
2	$m_1 = m_2 = m$; real and equal	$y = (A + Bx)e^{mx}$
3	$m = \alpha \pm i\beta$; imaginary	$y = e^{\alpha x} (A\cos\beta x + B\sin\beta x)$

Particular Integral of ay'' + by' + cy = f(x): Method of Undetermined Coefficients

f(x)	$y_p(x)$	
$P_n(x) = A_n x^n + \dots + A_1 x + A_0$	$x'(B_nx^n+\cdots+B_1x+B_0)$	
Ce ^{ax}	$x^r(Pe^{\alpha x})$	
$C\cos\beta x$ or $C\sin\beta x$	$x'(p\cos\beta x + q\sin\beta x)$	

Particular Integral of ay'' + by' + cy = f(x): Method of Variation of Parameters

Wronskian	Parameter	Solution
$W = \begin{vmatrix} y_1 & y_2 \\ y_1 & y_2 \end{vmatrix}$	$u_1 = -\int \frac{y_2 f(x)}{W} dx, u_2 = \int \frac{y_1 f(x)}{W} dx$	$y_p = u_1 y_1 + u_2 y_2$

FINAL EXAMINATION

SEMESTER/SESSION: SEM II/2015/2016

COURSE NAME

: ENGINEERING TECHNOLOGY

MATHEMATICS II

PROGRAMME: BDC/BDM COURSE CODE: BDU 11003

Laplace Transforms

Laptace Transforms							
$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt = F(s)$							
f(t)	F(s)	f(t)	F(s)				
а	$\frac{a}{s}$	H(t-a)	$\frac{e^{-as}}{s}$				
t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	f(t-a)H(t-a)	$e^{-as}F(s)$				
e ^{at}	$\frac{1}{s-a}$	$\delta(t-a)$	e^{-as}				
sin at	$\frac{a}{s^2 + a^2}$	$f(t)\delta(t-a)$	$e^{-as}f(a)$				
cos at	$\frac{s}{s^2 + a^2}$	$\int_0^t f(u)g(t-u)du$	F(s).G(s)				
sinh at	$\frac{a}{s^2 - a^2}$	y(t)	Y(s)				
cosh at	$\frac{s}{s^2 - a^2}$	$\dot{y}(t)$	sY(s) - y(0)				
$e^{at}f(t)$	F(s-a)	$\ddot{y}(t)$	$s^2Y(s)-sy(0)-\dot{y}(0)$				
$t^n f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n F(s)}{ds^n}$						

Periodic Function for Laplace transform : $\mathcal{L}\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$, s > 0.

Fourier Series

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right] \quad \text{where} \quad a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx$$