

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2012/2013

COURSE NAME

: ENGINEERING MATHEMATICS II

COURSE CODE

: BDA 14103

PROGRAMME : BDD

EXAMINATION DATE: JUNE 2013

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS IN

PART AND THREE **(3)**

QUESTIONS IN PART B

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

CONFIDENTIAL

PART A

Q1 (a) By using method of variation parameter, obtain the general solution for:

$$y"+y=2\sin x$$

(Note: $\sin 2x = 2\cos x \sin x$ $\cos 2x = 1 - 2\sin^2 x$)

(8 marks)

(b) A model for forced spring mass system is given by:

$$y'' + 8y' + 8y = 4\cos t$$

- (i) State the value of the mass, spring constant and damping constant for this system.
- (ii) If another 1 kg mass is added to this system, what will happen to this differential equation?
- (iii) Find the steady state solution for case with 2kg mass.
- (iv) Find the particular solution for the answer in Q2(b)(iii) that satisfies y(0) = 1 and y'(0) = 2.

(12 marks)

Q2 (a) Find the Laplace transform of $f(t) = \cos 2t$.

(2 marks)

(b) Express $\frac{3}{s(s^2+4)}$ in partial fraction.

(8 marks)

(c) By using the obtained result in Q3(b), show that

$$\mathcal{L}^{-1}\left\{\frac{3}{s(s^2+4)}e^{-4s}\right\} = \frac{3}{4}H(t-4)-\frac{3}{4}H(t-4)\cos(2(t-4)).$$

(3 marks)

(d) By using the obtained results in Q3(a)-(c), solve the following initial value problem.

$$y''+4y=f(t)$$
, $y(0)=1$, $y'(0)=0$, with

$$f(t) = \begin{cases} 0, & for & 0 \le t < 4 \\ 3, & for & t \ge 4 \end{cases}.$$

(7 marks)

PART B

Q3 A periodic function is defined as:

$$f(x) = \begin{cases} -1 & , & -\pi < x < 0 \\ 0 & , & x = 0 \\ 1 & , & 0 < x < \pi \end{cases}$$
$$f(x) = f(x + 2\pi)$$

(a) Determine whether the given function is even, odd or neither.

(2 marks)

(b) Prove that the corresponding Fourier series to this periodic function is given by:

$$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin[(2n-1)x]}{2n-1}, \quad -\pi < x < \pi$$
(12 marks)

(c) By choosing an appropriate value for x, show that

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$
 (6 marks)

A bar of silver of length 3 cm and constant across section of area 1cm^2 (density 10g/cm^3 , thermal conductivity 1.5 cal/(cm sec°C), specific heat 0.075 cal/(g °C), is perfectly insulated laterally, with ends kept at temperature 0°C and initial uniform temperature f(x) = 25 °C.

Given the heat equation:

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t}$$

(a) Show that $c^2 = 2$.

(2 marks)

(b) By using the method of separation of variable, and applying the boundary condition, prove that

$$u(x,t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{3} e^{-\frac{2n^2\pi^2t}{9}}$$

where b_n is an arbitrary constant.

(12 marks)

(c) By applying the initial condition, find the value of b_n .

(6 marks)

Q5 (a) Obtain the general solution for the differential equation:

$$(x^2 + y^2 + x)dx + xydy = 0$$

(8 marks)

- (b) Newton's Law of Cooling states that the rate of changes of the temperature, T, of a body is proportional to the difference between T and the temperature of the surrounding medium, T_s , multiplies to thermal conductivity k.
 - (i) Interpret this cooling law in the form of first order ordinary differential equation, and subsequently find its general solution.
 - (ii) If a thermometer with a reading of 10°C, is brought into a room whose temperature is 23°C, and the reading of the thermometer is 18°C after two minutes later, how long will it take until the reading is 23°C?

(12 marks)

Q6 (a) Solve the differential equation:

$$x\frac{dy}{dx} - y = \frac{x}{x+1}$$

(6 marks)

(b) By using the method of Laplace transform, solve the initial value problem of:

$$y'' + 5y' + 6y = e^{-t}$$

with the initial condition y(0) = y'(0) = 0.

(14 marks)

FINAL EXAMINATION

SEMESTER / SESSION

COURSE

: SEM II /20122013 : ENGINEERING

MATHEMATICS II

PROGRAMME COURSE CODE : 1 BDD

: BDA14103

FORMULAS

Characteristic Equation and General Solution for Second Order Differential Equation

Types of Roots	General Solution
Real and Distinct Roots: m_1 and m_2	$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$
Real and Repeated Roots: $m_1 = m_2 = m$	$y = c_1 e^{mx} + c_2 x e^{mx}$
Complex Conjugate Roots: $m = \alpha \pm i\beta$	$y = e^{ax}(c_1 \cos \beta x + c_2 \sin \beta x)$

Method of Undetermined Coefficient

g(x)	y_p
Polynomial:	
$P_n(x) = a_n x^n + + a_1 x + a_0$	$x'(A_nx^n++A_1x+A_0)$
Exponential:	
e^{ax}	$x^r(Ae^{ax})$
Sine or Cosine:	
$\cos \beta x$ or $\sin \beta x$	$x'(A\cos\beta x + B\sin\beta x)$

Note: $r ext{ is } 0, 1, 2 \dots ext{ in such a way that there is no terms in } y_p(x) ext{ has the similar term as in the } y_c(x).$

Method of Variation of Parameters

The particular solution for y'' + by' + cy = g(x)(b) and c constants) is given by $y(x) = u_1y_1 + u_2y_2$,

$$u_1 = -\int \frac{y_2 g(x)}{W} dx,$$

$$u_2 = \int \frac{y_1 g(x)}{W} dx,$$

$$u_2 = \int \frac{y_1 g(x)}{W} dx,$$
where
$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2 \end{vmatrix}$$

Laplace Transform

$\mathcal{L}\{f(t)\} = \int_{0}^{\infty} f(t)e^{-st}dt = F(s)$	
f(t)	F(s)
а	$\frac{a}{s}$
$t^n, n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$
e ^{at}	$\frac{1}{s-a}$
sin at	$\frac{a}{s^2 + a^2}$
cos at	c
sinh at	$\frac{s}{s^2 + a^2}$ $\frac{a}{s^2 - a^2}$
cosh at	$\frac{s}{s^2 - a^2}$ $F(s - a)$
$e^{at}f(t)$	F(s-a)
$t^{n} f(t), n = 1, 2, 3,$	$(-1)^n \frac{d^n F(s)}{ds^n}$
H(t-a)	$\frac{e^{-as}}{s}$
f(t-a)H(t-a)	$e^{-as}F(s)$
$f(t)\delta(t-a)$	$e^{-as}f(a)$
y(t)	Y(s)
$\dot{y}(t)$	sY(s)-y(0)
$\ddot{y}(t)$	$s^2Y(s)-sy(0)-y'(0)$

Fourier Series

Fourier series expansion of periodic function with period 2 π

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$

Half Range Series

$$a_0 = \frac{2}{L} \int_0^L f(x) dx$$

$$a_n = \frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n\pi x}{L} dx$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$$
$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$$

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$