CONFIDENTIAL

٠/

٩

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2012/2013

COURSE NAME	:	PHYSICS II
COURSE CODE	:	DAS 14203/DSF1973
PROGRAMME	:	2 DAA / 2 DAE / 2 DAM / 3 DTT / 3 DAA / 3DET
EXAMINATION DATE	:	OCTOBER 2012
DURATION	:	2 ¹ / ₂ HOURS
INSTRUCTION	:	ANSWER ALL QUESTIONS IN PART A AND TWO (2) QUESTIONS ONLY IN PART B

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

PART A

÷

٩

Q1 (a) Two slits are separated by 2.00×10^{-5} m. They are illuminated by light of wavelength 5.60×10^{-7} m. If the distance from the slits to the screen is 6.00 m, what is the separation between the central bright fringe and the third dark fringe?

(5 marks)

(b) In a Young's double slit experiment, the separation between the slits is 1.20×10^{-4} m; and the screen is located 3.50 m from the slits. The distance between the central bright fringe and the second-order bright fringe is 0.0415 m. What is the wavelength of the light used in this experiment?

(5 marks)

- (c) Light of wavelength 600 nm is incident upon a single slit with width 4×10^{-4} m. The **Figure Q1(c)** shows the pattern observed on a screen positioned 2 m from the slits. Determine:
 - (i) the distance s.
 - (ii) the distance d.
 - (iii) the width of central maximum.

(15 marks)

Q2 (a) By sketching a simple diagram, states the law of reflection on a plane mirror.

(6 marks)

(b) An object 8 cm high is placed 60 cm from a concave mirror of 10 cm focal length. Find the distance, size and character of image.

(9 marks)

(c) An object is 25 cm in front of a convex mirror with a focal length of 12cm. Find the image distance and the magnification of the image.

(5 marks)

(d) At what angle must a ray of light incident on water to be refracted into the water at an angle of 30° to the normal?

(5 marks)

PART B

Q3 (a) A car is moving at a speed of 20m/s. The driver of the car sounds a horn having a frequency of 800Hz. What is the frequency in the sound that the observer hears if the car moving away from stationary observer?

(3 marks)

- (b) As shown in **Figure Q3(b)**, an observer is standing between two parallel roads when two cars approach from opposite directions. Car A has speed $v_a=20$ m/s and the driver sound a horn, which has a frequency 150Hz. Car B has a speed $v_b=15$ m/s.
 - (i) Find the wavelength λ and frequency receives from car A.
 - (ii) What frequency heard by the driver on car B?

(11 marks)

- (c) Refer to question Q3(b), if some of the sound waves reaching car B are reflected back toward observer and car A.
 - (i) Find the wavelength and the frequency of the reflected sound waves that observer hears.
 - (ii) What frequency does the driver on car A hear in the reflected waves?

(11 marks)

- **O4** (a) Define
 - (i) Pascal's Law
 - (ii) Archimedes Principle

(4 marks)

- (b) A 120kg solid cube of materials with density of 6.5×10^3 kg/m³ is immersed in oil. The density of oil is 800kg/m³.
 - (i) Calculate the volume of solid cube.
 - (ii) How much the weight of oil displaced by the solid cube?
 - (iii) Compute the force is required to support the solid cube when it is immersed in oil?

(12 marks)

(c) A hydraulic lift has a large piston 40cm in diameter and a small piston 5cm in diameter.

- (i) What force is required on small piston to lift a load of 1200 kg?
- (ii) What is the pressure increase due to the force in the confined fluid?

(9 marks)

- Q5 (a) Suzana decides to create her own temperature scale. She places an uncalibrated mercury thermometer into an ice-water bath and calls the mercury level 20.0°S. She then places the uncalibrated thermometer into boiling water and calls the mercury level 170.0°S. Finally, she divides the distance between these two levels into 150 equal lengths. Determine the following:
 - (i) The reading on Suzana's thermometer when a Fahrenheit thermometer reads 80.0°F.
 - (ii) The Kelvin temperature when Suzana's thermometer reads 125°S.

(10 marks)

- (b) In a calorimetry experiment, 200 g of water is placed in a 150 g copper calorimeter cup. The cup and water have an initial temperature of 20°C and are well insulated from the surroundings. After 200 g of lead shot is heated to 100°C it is dumped into the water and an equilibrium temperature obtained. Determine the following:
 - (i) Final equilibrium temperature of the system
 - (ii) Heat gained by the water
 - (iii) Heat gained by the calorimeter cup
 - (iv) Total Heat gained by the water and calorimeter cup
 - (v) Total Heat lost by the lead shot

(15 marks)

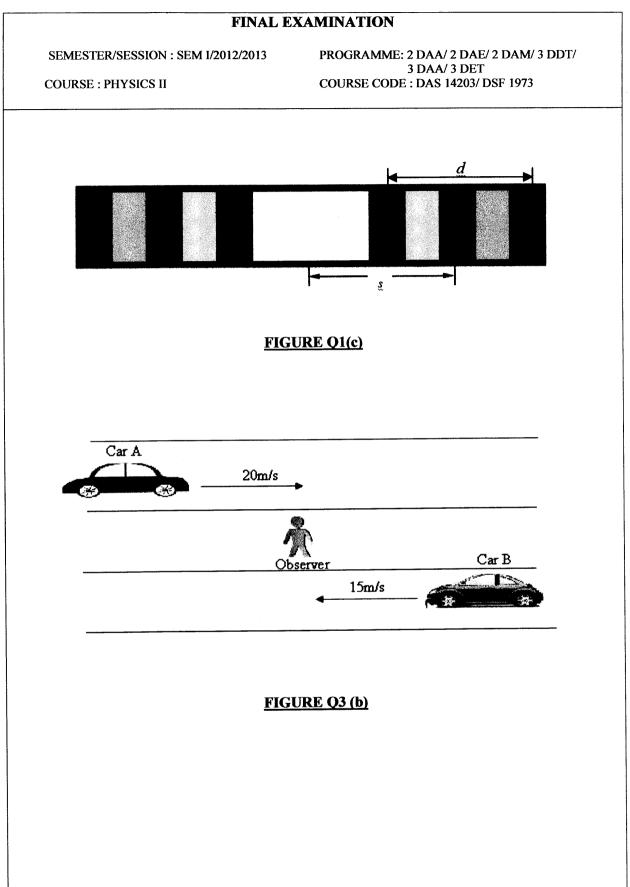
Q6 (a) A steel cable 4.00 m long is stretched tightly across a driveway on a day when the temperature is 30.0° C. The coefficient of linear expansion for steel is 1.20×10^{-5} /K and Young's Modulus for steel is 2.00×10^{11} N/m². Calculate the change in length of the steel cable on a day when the temperature is -10.0° C.

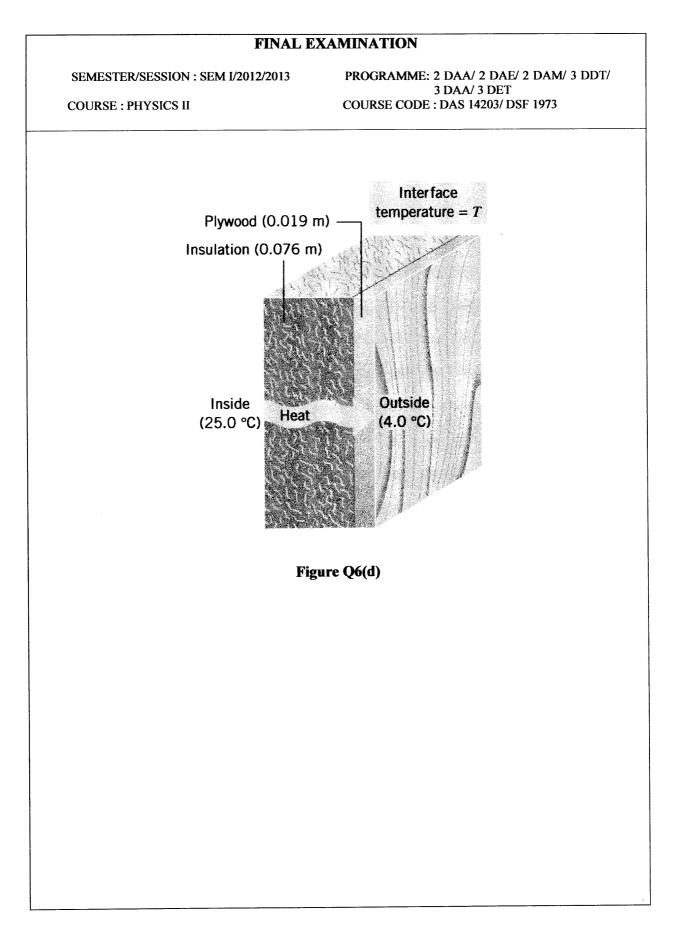
(5 marks)

(b) A 150-cm³ glass test tube is filled to the brim with water at 0°C. Determine the amount of water that will overflow if the test tube and contents are heated to 100°C. Given, $\gamma_{water} = 207 \times 10^{-6} K^{-1}$ and $\gamma_{glass} = 26 \times 10^{-6} K^{-1}$.

(5 marks)

(c) Determine the change in volume of a block of iron 5 cm × 10 cm × 6 cm, when temperature changes from 15°C to 47°C. $\alpha_{iron} = 12 \times 10^{-6} \text{ °C}^{-1}$.


(5 marks)


(d) One wall of a house consists of plywood backed by insulation as shown in **Figure Q6(d)**. The thermal conductivities of the insulation and plywood are 0.030 and 0.080 J/($s \cdot m \cdot {}^{\circ}C$), respectively, and the area of the wall is $35m^{2}$. Find the amount of heat conducted through the wall in one hour.

(10 marks)

١

•

FINAL EXAMINATION

SEMESTER/SESSION : SEM I/2012/2013

COURSE : PHYSICS II

PROGRAMME: 2 DAA/ 2 DAE/ 2 DAM/ 3 DDT/ 3 DAA/ 3DET COURSE CODE: DAS 14203/ DSF 1973

LIST OF CONSTANTS

- 1. Gravity acceleration, $g = 9.81 \text{ m/s}^2$
- 2. Speed of light in air, $c = 3 \times 10^8$ m/s
- 3. Speed of sound, $v_{sound} = 335 \text{ m/s}$
- 4. Threshold of sound intensity, $I_o = 1 \times 10^{-12} \text{ W/m}^2$
- 5. Atmospheric pressure, $P_{atm} = 1.0 \times 10^5$ Pa
- 6. Specific heat of water, $c_{water} = 4.186 \text{ kJkg}^{-1}\text{K}^{-1}$
- 7. Specific heat of copper, $c_{copper} = 0.385 \text{ kJkg}^{-1}\text{K}^{-1}$
- 8. Specific heat of lead, $c_{lead} = 0.13 \text{ kJkg}^{-1}\text{K}^{-1}$
- 8. Latent heat of fusion of water, $L_f = 333.7 \times 10^3 \text{ J/kg}$
- 10. Latent heat of vaporization of water, $L_v = 2256 \times 10^3 \text{ J/kg}$
- 11. Density of seawater, $\rho_{seawater} = 1030 \text{ kg/m}^3$
- 12. Density of water, $\rho_{water} = 1000 \text{ kg/m}^3$
- 13. Refractive index (n_{air}) of air = 1.00
- 14. Refractive index (n_{water}) of water = 1.333
- 15. Refractive index (n_{ice}) of ice = 1.304

FINAL EXAMINATION

SEMESTER/SESSION : SEM I/2012/2013

PROGRAMME: 2 DAA/ 2 DAE/ 2 DAM/ 3 DDT/ 3 DAA/ 3DET COURSE CODE : DAS 14203/ DSF 1973

LIST OF FORMULAS

COURSE : PHYSICS II

4

.*

$y = \frac{\left(m + \frac{1}{2}\right)\lambda D}{d}$	$Sin\theta = \frac{m\lambda}{d}$	$y = \frac{m\lambda L}{d}$
$T_F = 1.8T_C + 32^\circ F$	$\Delta L = \alpha L_o \Delta T$	$\Delta \mathbf{A} = \beta \mathbf{A}_o \Delta T$
$Q = mc\Delta T$	$Q = mL_f$	$Q = mL_{v}$
$\Delta V = \gamma V_o \Delta \theta$	$\gamma = \gamma_{apparent} + \gamma_{glass}$	$\frac{Q}{t} = \frac{\Delta T}{\sum R_n}$
$\frac{Q}{t} = \kappa A \frac{\Delta T}{d}$	$\Delta P = \frac{F_1}{A_1} = \frac{F_2}{A_2}$	$F = \rho g V$
$P = \frac{F}{A} = \rho g h$	$F_{net} = W - F_B$	$\frac{Q}{t} = kA(\frac{T_{hot} - T_{cold}}{d})$
$\rho = \frac{m}{V}$	W=mg	$\lambda = \frac{v}{f}$
$\beta = 10 \log \left(\frac{I}{I_o} \right)$	$A_{circle} = \pi r^2$	$A_{sphere} = 4\pi r^2$
$V_{sphere} = \frac{4}{3} \pi r^3$	$f_o = f_s \frac{(v \pm v_o)}{(v \mp v_s)}$	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}$	$T = {\binom{X_T - X_o}{X_{100} - X_o}} x 100^o C$	$I = I_0 \cos^2 \theta$
$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$		