

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2010/2011

NAME OF COURSE	:	DYNAMICS	
COURSE CODE	•	BDA 2013 / BDA 20103	
PROGRAM	:	2 BDD	
DATE OF EXAMINATION	:	NOVEMBER/DECEMBER 2010	
DURATION	:	3 HOURS	
INSTRUCTION	:	PART A: ANSWER ALL QUESTIONS. PART B: ANSWER TWO (2) QUESTIONS ONLY.	
THIS PAPER CONSISTS OF 8 PAGES			

PART A : ANSWER ALL QUESTIONS

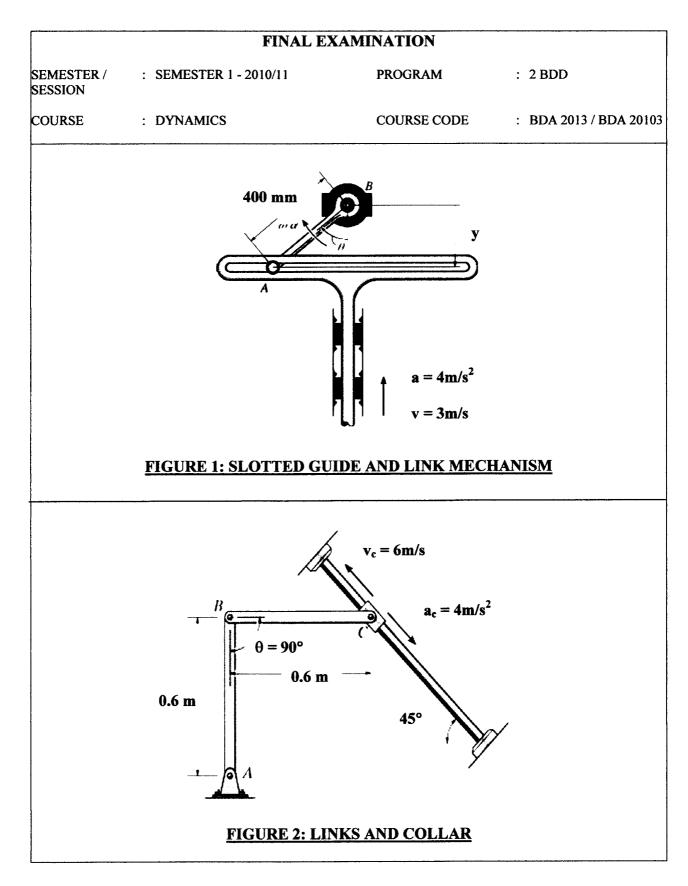
- Q1 Figure 1 shows the slotted guide which act as one of the mechanism used to translate and rotate the machinery component of the system. At an instant $\theta = 45^{\circ}$, the slotted guide is moving upward with an acceleration of 4 m/s^2 and a velocity of 3 m/s. The upward motion of the guide is in the negative y direction.
 - (a) Illustrate the free body diagram of the system and find the position coordinate equation.
 [3 marks]
 - (b) Determine the angular velocity (ω) of link AB at this instant. [6 marks]
 - (c) Determine the angular acceleration (α) of link AB at this instant. [6 marks]
- Q2 A system is built and equipped with the links AB and BC as shown in Figure 2. The link BC is connected with the incline shaft at collar C. At a given instant the collar C is moving incline upward at an angle of 45 ° with the velocity of $v_c = 6 m/s$ and it also undergoing the deceleration of $a_c = 4 m/s^2$. By assuming that the angle $\theta = 90^{\circ}$;
 - (a) Calculate the angular velocity of link AB and BC of the system. [8 marks]
 - (b) Determine the angular acceleration of link AB. [6 marks]
 - (c) Find the angular acceleration of link BC. [6marks]
- Q3 A uniform slender rod AB of length 90 cm and mass of 10 kg hangs freely from a hinge at O. The illustration of the hanging slender rod is shown in Figure 3. A horizontal force of magnitude 60 N is applied at end B.
 - (a) Determine the mass moment of inertia of the slender rod about the hinge at O.

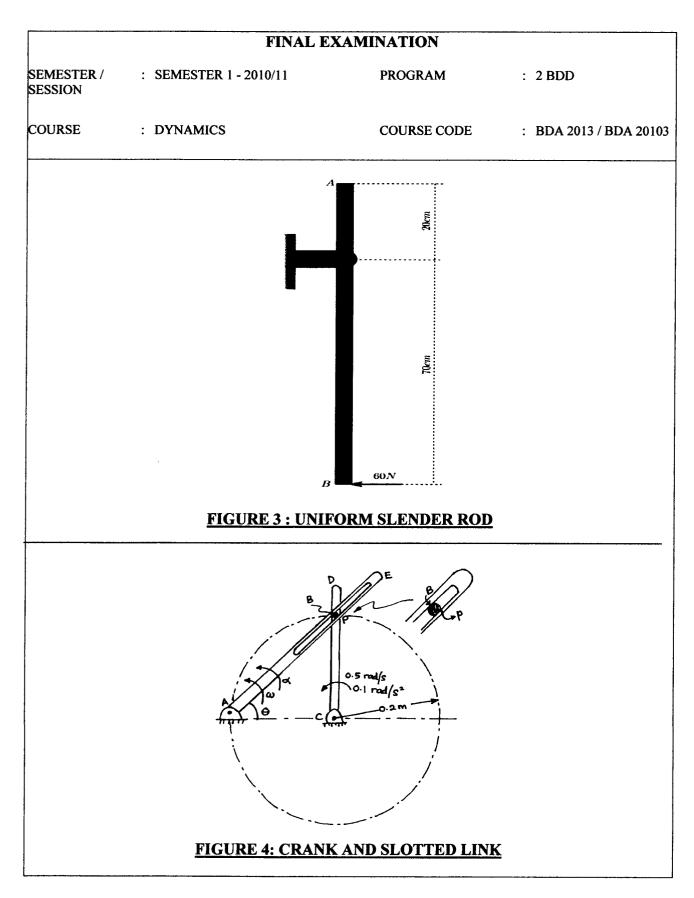
(b)Find the angular acceleration about the hinge O.[6marks](c)Calculate the components of reaction force at the hinge O.[4marks]

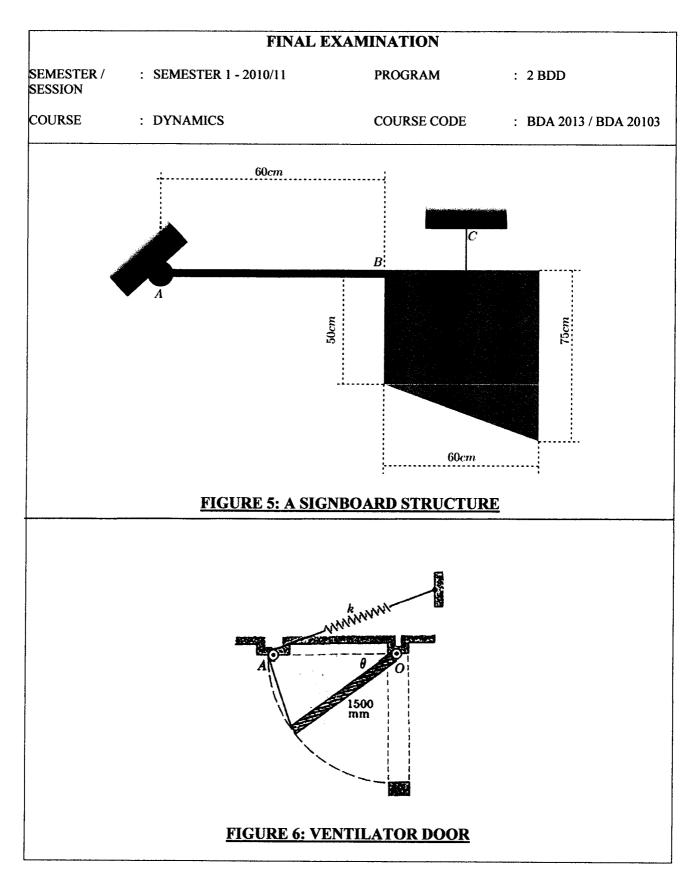
PART B : ANSWER TWO (2) QUESTIONS ONLY

- Q4 The crank CD revolves anti clockwise with an angular velocity, $\omega = 0.5 \text{ rad/s}$ and acceleration, $\alpha = 0.1 \text{ rad/s}^2$ as shown in Figure 4. The pin P is fixed to rod CD and can only slide along the slot of link AE. For the position $\theta = 45^{\circ}$;
 - (a) Determine the angular velocity of slotted link AE. [13marks]
 - (b) Calculate the angular acceleration of slotted link AE. [12marks]

- Q5 A signboard consists of slender rod AB (60 cm) and an aluminium plate. The mass of the slender rod is 5 kg. This slender rod and the plate are welded at B so that the connection is fixed. The thickness of the plate is 1 cm and the mass density of the aluminium material is 7000 kg/m³. The attachment of the signboard is illustrated in Figure 5. This signboard has a hinge at A that enable the structure to rotate about point A. By looking at the structure as illustrated in the following figure;
 - (a) Determine the center of mass of the signboard structure, measured from the hinge


at A. [5 marks] (b) Calculate the mass moment of inertia of the signboard structure about the hinge at A.


[5 marks]


If the support at C is cut;

- (c) Draw an illustration when the signboard structure has a maximum angular speed.
 Your illustration must be clear, visible and readable. [5 marks]
- (d) Calculate the value of maximum angular speed. [5 marks]
- (e) Calculate the moment required at A to stop the signboard at the condition as you have described in (c).
 [5 marks]

- Q6 Figure 6 shows the cross section of a uniform 110 kg ventilator door hinged about its upper horizontal edge at O. The door is controlled by the spring-loaded cable that passes over the small pulley at A. The spring has a stiffness of 200 N/m of stretch and is undeformed when $\theta = 0$. If the door is released from rest in the horizontal position;
 - (a) Find the angular velocity, ω in rad/s reached by the door at $\theta = 60^{\circ}$. [12 marks]
 - (b) Determine the suitable spring stiffness k (N/m) that can be used so that the angular velocity at $\theta = 90^{\circ}$ is $\omega = 0$ rad/s. [13 marks]

FINAL EXAMINATION		
PROGRAM : 2 BDD		
COURSE CODE : BDA 2013 / BDA 20103		
$I_{YY} = \frac{1}{12}m(A^{2} + B^{2})$ $I_{ZZ} = \frac{1}{12}m(A^{2} + C^{2})$ x		