

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2009/2010

SUBJECT NAME

FLUID MECHANICS 1

SUBJECT CODE

BDA 1052

COURSE

1 & 2 BDD

EXAMINATION DATE

APRIL/MEI 2010

DURATION

2 ½ HOURS

INSTRUCTION

ANSWER **FIVE (5)** QUESTIONS ONLY FROM **SIX (6)** QUESTIONS.

THIS EXAMINATION PAPER CONTAIN (6) PAGES

BDA 1052

narks)
narks)
narks)
narks)
ilui koj
oipe A
narks)
narks)
gate, ens by gth of
narks)
he
narks)
l is in s end.
narks)
narks)

BDA 1052

(b) Starting with the Bernoulli and Continuity equations, show that the following expression gives the flowrate measured by a venturi meter.

$$Q = C_d A_1 A_2 \sqrt{\frac{2g\left(\frac{P_1 - P_2}{\rho g} + z_1 - z_2\right)}{A_1^2 - A_2^2}}$$

(8 marks)

(c) A venturi meter is used to measure the flow of water in a pipe of diameter 100 mm. The throat diameter of the venturi meter is 60 mm with a discharge coefficient of 0.9. Determine the density of the manometric fluid if the manometer shows a head difference of 60 cm when the volume flowrate is 100 litre/s.

(8 marks)

Q5 (a) Describe body forces and surface forces acting on a control volume. Give two examples for each force.

(6 marks)

(b) A 12 cm diameter pipe, containing water flowing at 20.4 kg/s, is capped by an orifice plate as shown in **Figure Q5** (b). The exit jet is 25 mm in diameter. The pressure in the pipe at section 1 is 800 kPa. Calculate the force required to hold the orifice plate.

(14 marks)

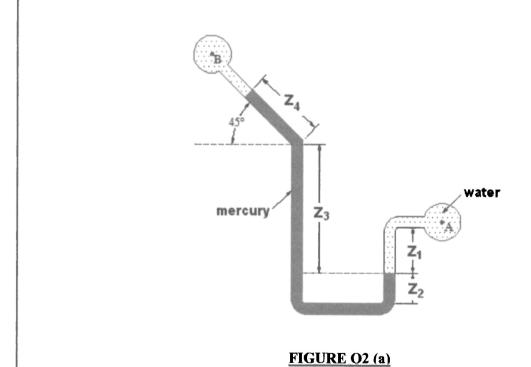
Q6 (a) The flow rate Q through an orifice plate is a function of pipe diameter D, pressure drop Δp across the orifice, fluid density ρ and viscosity μ , and orifice dimeter d. Using D, ρ and Δp as repeating variables, express this relationship in dimensionless form.

(15 marks)

(b) The aerodynamic drag of a new sports car is to be predicted at a speed of 80 km/hr at an air temperature of 25°C. Automotive engineers build a onefifth scale model of the car to test in a wind tunnel. It is winter and the wind tunnel is located in an unheated building; the temperature of the wind tunnel air is only about 5°C. Determine how fast the engineers should run the wind tunnel in order to achieve similarity between the model and the prototype.

Given are properties of air at 5°C and 25°C.

At 5°C: $\rho_{air} = 1.269 \text{ kg/m}^3$ and $\mu_{air} = 1.754 \times 10^{-5} \text{ kg/m.s}$ while at 25°C: $\rho_{air} = 1.184 \text{ kg/m}^3$ and $\mu_{air} = 1.849 \times 10^{-5} \text{ kg/m.s}$


(5 marks)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2009/2010 SUBJECT : FLUID MECHANICS 1 COURSE: 1 & 2 BDD SUBJECT CODE: BDA1052

FIGURE O1 (a)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2009/2010 SUBJECT : FLUID MECHANICS 1 COURSE: 1 & 2 BDD SUBJECT CODE: BDA1052

₿€

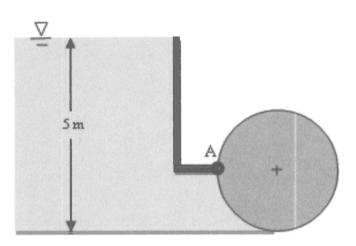


FIGURE O2 (b)

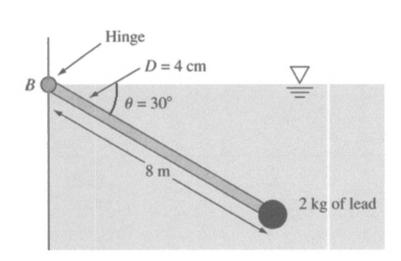


FIGURE 03 (b)

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2009/2010 SUBJECT : FLUID MECHANICS 1

COURSE: 1 & 2 BDD SUBJECT CODE: BDA1052

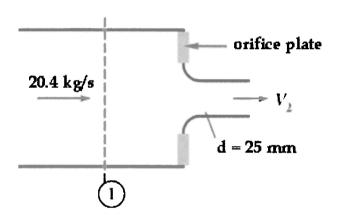


FIGURE O5 (b)