

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER 2 SESSION 2009/2010

SUBJECT	:	FINITE ELEMENT METHOD
SUBJECT CODE	:	BDA 4033
COURSE	:	4 BDD
DATE	:	APRIL/MAY 2010
DURATION	:	2 HOURS and 30 MINUTES
INSTRUCTION	:	PART A: ANSWER ALL QUESTIONS PART B: ANSWER ALL QUESTIONS

THIS PAPER CONSISTS OF 8 PAGES INCLUDING COVER PAGE

BDA 4033

PART A - Basic Comprehension and Understanding - 40 Marks (2 Questions, Answer All Questions)

Q1 A structure consists of three nodes (node 1, 2 and 3) and every node has two-degree of freedom. A global static equation of $[K] \{u\} = \{F\}$ of the structure before any constraints applied to the static equation is shown below

K_{11}	K_{12}	K_{13}	K_{14}	K_{15}	K_{16} -		$\begin{bmatrix} u_1 \end{bmatrix}$		$[F_{1x}]$	
K_{21}	K_{22}	K_{23}	K_{24}	K_{25}	K_{26}		v_1		F_{1y}	
K_{31}	K_{32}	K_{33}	K_{34}	K_{35}	K_{36}		u_2		F_{2x}	
K_{41}	K_{42}	K_{43}	K_{44}	K_{45}	K_{46}	Ιì	v_2	r — 1	F_{2y}	Ĺ
K_{51}	K_{52}	K_{53}	K_{54}	K_{55}	K_{56}		u_3		F_{3x}	
K_{61}	K_{62}	K_{63}	K_{64}	K_{65}	K_{66}		$\left[\begin{array}{c} v_3 \end{array} \right]$		$\left[\begin{array}{c} F_{3y} \end{array} \right]$	

The constraints of the structure is as follows:

Node 1 is fixed, the node cannot move to any direction.

Node 2 is constrained in x direction (must be displaced β_1).

Node 3 is constrained in y direction (must be displaced β_2).

- (a) Write the matrix equation above after all constraints applied, by implementing penalty method.
- (b) Write the matrix equation above after all constraints applied, by implementing direct elimination method.

(25 marks)

- Q2 Assuming that the global matrix structural equation of a structure before constraints applied is $[K] \{u\} = \{F\}$ and after all boundary conditions (constraints) applied is $[K^c] \{u\} = \{F^c\}$
 - (a) Write the equation to calculate the displacement vector $\{u\}$
 - (b) Write the equation to calculate the reaction force vector when the structure has been displaced by the displacement vector $\{u\}$

(15 marks)

BDA 4033

PART B - Analysis, Synthesis and Applications - 60 Marks (3 Questions, Answer All Questions)

Q3

In general one dimensional heat transfer problem, the conductance matrix of the element can be expressed into four parts,

$$[k]^{(e)} = \underbrace{\left[\begin{array}{cc}h_{\infty i}A & 0\\0 & 0\end{array}
ight]}_X + \underbrace{\frac{kA}{L}\left[\begin{array}{cc}1 & -1\\-1 & 1\end{array}
ight]}_Y + \underbrace{\frac{h_{\infty}pL}{6}\left[\begin{array}{cc}2 & 1\\1 & 2\end{array}
ight]}_Z + \underbrace{\left[\begin{array}{cc}0 & 0\\0 & h_{\infty j}A\end{array}
ight]}_Q$$

and the the elemental thermal load vector can be written into five parts,

$$\{f\}^{(e)} = \underbrace{h_{\infty i}AT_{\infty i} \begin{bmatrix} 1\\0 \end{bmatrix}}_{x} + \underbrace{\underbrace{CAL}_{2} \begin{bmatrix} 1\\1 \end{bmatrix}}_{y} + \underbrace{\frac{qPL}_{2} \begin{bmatrix} 1\\1 \end{bmatrix}}_{z} + \underbrace{\underbrace{h_{\infty}TPL}_{2} \begin{bmatrix} 1\\1 \end{bmatrix}}_{q} + \underbrace{\underbrace{h_{\infty j}AT_{\infty i} \begin{bmatrix} 0\\1 \end{bmatrix}}_{m}$$

In a case of isolated cylinder (diameter 2 cm, divided into four elements) shown in FIGURE Q3,

- (a) <u>Draw clearly</u> your one dimensional finite element model and <u>indicate the element</u> <u>numbers and the nodes</u>. You have to use your definition consistently in answering the next questions.
- (b) Calculate the <u>conductance matrix</u> and the elemental <u>thermal load vector</u> of <u>every</u> element.
- (c) Write the system complete matrix equation $[K^c] \{T\} = \{F^c\}$ after applying the boundary condition T_b . Either penalty method or elimination method can be chosen in implementing the boundary condition (constraint) into the equation.
- (d) Explain how to find the distribution of the temperature. One sentence answer should be sufficient, or just write the equation to find $\{T\}$.

(20 marks)

Q4 A two dimensional structure is isolated in two edges. The upper edge is exposed to the air with temperature of $T_f = 20^{\circ}C$ and the convection coefficient $h = 50 \text{ W/m}^2\text{c}$. The right edge is maintained the temperature at $T = 80^{\circ}C$. The conductivity of the material is uniform, k = 168 W/m c

This two dimensional heat transfer problem is modelled by using Bilinear Rectangular elements as shown in FIGURE Q4.

- (a) Firstly you are requested to write clearly your definition of the element and the corresponding nodes. Use a table with columns of Element, Node i, Node j, Node k, Node l.
- (b) Calculate the conductance matrix of each element and the thermal load vector of each element
- (c) Write the global system matrix equation $[K^c] \{T\} = \{F^c\}$ after considering all constraints.

(20 marks)

BDA 4033

Q5 A beam structure is shown in FIGURE Q5. The beam has distributed load and concentrated load at the location as indicated by the figure. The material elasticity of the beam is E = 200 GPa and the inertia cross section of the beam is $I = 0.0002 \text{ m}^4$. The beam is supported by a vertical directional spring with a spring constant k = 200 kN/m. The element definition in regard to the nodes is collated in the table below

Element	Node i	Node j
1	1	2
2	2	3
3	3	4

At node 2, there is a constraint that it must be displaced vertically 5 mm

- (a) Calculate the stiffness matrix of every element $[k]^{(e)}$ as well as the force vector of every element $\{f\}^{(e)}$
- (b) Determine the system stiffness matrix after considering the boundary conditions.
- (c) Write down your calculation approach to find the displacement of every node, simultaneously as the displacement vector $\{u\}$. You do not need to really solve!
- (d) Write down your calculation approach to find the reaction force in every node.

(20 marks)

