

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2019/2020**

COURSE NAME

FUNDAMENTAL TO PLANT

TECHNOLOGY

COURSE CODE

: BNL 20103

PROGRAMME CODE : BNL

EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020

DURATION

3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

Q1 (a) Define the term endothermic and exothermic process.

(4 marks)

- (b) Calculate the energy/enthalpy required or consumed for the following reactions by using the bond energy as shown in **Table Q1** (b), and estimate either the reactions is exothermic or endothermic process.
 - (i) Hydrogenation of propene;

$$CH_3CH = CH_2 + H_2 \rightarrow CH_3CH_2CH_3$$

(8 marks)

(ii) Combustion of propane;

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$
 (8 marks)

Q2 (a) Calculate the percentage of hydrogen, carbon and oxygen in ethanol (C_2H_5OH), where the molar mass of C = 12.01 (g/mol), H = 1.01 (g/mol) and O = 16 (g/mol), respectively.

(8 marks)

(b) A mixture of gases is analyzed and found to have the following composition as shown in **Table Q2** (b). Determine the mass of 8 mol of the gas mixture.

Table Q2 (b): The properties of mixture gases

Compound	MW (g/mol)	Compositions (%)	
CO ₂	44.01	14.2	
CO	28.01	8	
CH_4	16.04	19.6	
N_2	28.01	TERB30.7KA	
H_2	2.02	10.3	
H_2O	18	11.8	
SO_2	64.06	5.4	

(12 marks)

Q3	(a)		be the difference between process flow diagram (PFD) and prentation diagram (P&ID).	rocess and (8 marks)		
	(b)	Name the following process symbols shows in Figure Q3(b) and briefly function of each equipment.				
	(c)	Identif	y the primary difference between a pump and a compressor.	(3 marks)		
Q4	(a)	Descri	be briefly the following:			
		(i)	Dalton's Law.	(4 marks)		
		(ii)	Raoult's Law.	(4 marks)		
	(b)	10 grams of N_2 is mixed with 5 grams of O_2 and held at 25 °C and 0.750 bar.				
		(i)	Determine the partial pressures of N_2 and O_2 . ($N=14.007$ g/mol; g/mol).	O = 15.999 (9 marks)		
		(ii)	Determine the volume of the ideal mixture.	(3 marks)		
Q5	300 k and pr	g of car	bon dioxide are stored in a tank at 6 °C and 20 bar. The critical of CO_2 is 304.2 K and 73.87 bar, respectively. (T_c = 304.2 K and P_c	temperature = 73.87 bar)		
	(a)	Deterr Comp	mine the actual volume of the tank, by using Nelson–Obert ressibility Charts as shown in Table Q5 (a). ($CO_2 = 44 \text{ kg/kmol}$)	Generalize (14 marks)		
	(b)	Calcul	late the density of the CO ₂ at these condition.	(6 marks)		

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2019/2020

COURSE NAME

: FUNDAMENTAL TO PLANT

TECHNOLOGY

PROGRAMME CODE: BNL

COURSE CODE : BNL 20103

Table Q 1(b)

Table of Bond Enthalpies (kJ/mole) at 25 °C

Bond	Enthalpy	Bond	Enthalpy	Bond	Enthalpy
Н-Н	435	C-N	301	P≡P	490
H-F	569	C-O	352	Br-Br	193
H-Cl	431	C=O	532	Cl-Cl	243
H-Br	364	C-Br	234	H-Se	276
H-I	297	C-Cl	331	Н-Те	243
H-C	414	C-F	440	S=S	427
H-N	460	N≡N	950	C-S	260
Н-О	465	N-N	297	H-Si	393
H-S	377	O=O	498	H-P	318
C-C	368	O-O	213	C-Si	289
C=C	724	F-F	159	I-I	151
C≡C	963	Si-Si	339		

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2019/2020

COURSE NAME

: FUNDAMENTAL TO PLANT

TECHNOLOGY

PROGRAMME CODE: BNL

COURSE CODE : BNL 20103

(i)

(ii)

(ii)

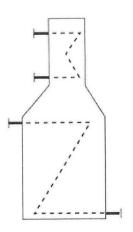


Figure Q3 (b)

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2019/2020

COURSE NAME

: FUNDAMENTAL TO PLANT


TECHNOLOGY

PROGRAMME CODE: BNL

: BNL 20103 COURSE CODE

Table Q5 (a)

