

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2019/2020

COURSE NAME

: FIBER OPTIC TECHNOLOGY

COURSE CODE

BNF 43103

PROGRAMME CODE :

BNF

EXAMINATION DATE :

DECEMBER 2019 / JANUARY 2020

DURATION

3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

CONFIDENTIAL

Q1	(a)	Explain	the following attenuation mechanisms in silica optical fiber:				
		(ii)	Intrinsic absorption Extrinsic absorption Rayleigh scattering			~	
					(7 marks)		
	(b)	Fiber dispersion can severely limit the useful bandwidth of the fiber. Several important dispersion parameters can cause the spreading of light pulse in time as it propagates down the fiber. With the aid of suitable diagrams, explain fiber modal dispersion. (5 marks)					
						(5 marks)	
	(c) A multimode step index fiber has a relative refractive index core refractive index of 1.5. The number of modes propa 1.3 μm is 1000. Calculate:					f 2% and a velength of	
			The cladding refractive inde	X			
		, ,	The numerical aperture The diameter of the fiber core				
		(111)	The diameter of the floor con			(8 marks)	
Q2	(a)	Explain the concept of absorption, stimulated emission, and spontaneous emission. (6 marks)					
	(b)	Optical sources, LED and LASER, convert electrical signal to a light wave.					
		(i)	Describe briefly the basic op	perating	principle of LED and LASER.	(2 marks)	
		(ii)	Sketch the typical output power spectrum of LED and LASER. For LAS illustrate the output spectrum when operating below and after thresh		or LASER, r threshold		
			current.			(6 marks)	
	(c)	An LED guiding region emits 8 mW and has a refractive index of 3.61 at the operating wavelength. For a diode current of 20 mA, determine:					
		(i)	The external quantum effici	ency.		(2 marks)	
		(ii)	The power leaving of the LED surface.		(2 - • • •		
				ï	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE	(2 marks)	
		(iii)	The responsivity.		TERBUKA	(2 marks)	

Q3	(a)	List and describe TWO (2) primary characteristics of light detectors. (4 marks)				
	(b)	Given a silicon photodetector having the following specifications: responsivity is 0.5 A/W and 3 dB bandwidth is 500 MHz. Find:				
		(i)	The current which will be produced if it is incident by a -43 dBm opti	cal ray. 3 marks)		
		(ii)	The rise time of the photodetector.	3 marks)		
	(c)	photoc	3×10^{11} photons each with a wavelength of 0.85 µm are incidediode, an average 1.2×10^{11} electrons are collected at the terminals. Determine:			
		(i)	The quantum efficiency.	3 marks)		
		(ii)	The responsivity of the photodiode.	3 marks)		
	(d)	Discus	ss how temperature can change silicon PIN photodiode noise.	4 marks)		
Q4	(a)	List T	TWO (2) types of optical coupler that is available in the market.	2 marks)		
	(b)	You are required to characterize a biconical-tapered coupler of unknown specification as shown in Figure Q4(b) . The power injected from the laser source into the coupler is 5 mW. The measured output power shows a reading of 0.7 mW, 2.8 mW and 1.5 μ W for P ₂ , P ₃ and P ₄ , respectively. Determine the:				
		(i) (ii) (iii) (iv)	Coupling ratio Insertion loss Excess loss Directivity			
		(1V)		8 marks)		
	(c)	Erbium-doped fiber amplifier (EDFA) and LASER use stimulated emission to operate.				
		(i)	Draw a block diagram of a basic EDFA and explain the function component of the basic EDFA. TERBUKA (of every 5 marks)		
		(ii)	The EDFA can be extended to become a fiber laser. Suggest TWO to modify the EDFA to become an erbium-doped fiber laser (EDF) state the difference between laser and EDFA.			
			(o marks)		

Q5 (a) UniFi is a broadband service by Telekom Malaysia (TM) that uses fiber optics to deliver high speed internet, phone and internet protocol TV (IPTV) services to customers' homes. From your understanding illustrate the network from the central office to the in-home networks. Please specify the type of lasers, fibers, number of users and the technology that suitable to describe UniFi systems.

(10 marks)

- (b) Laser diode with an input power of 0.5 mW is launched into a fiber. The launch amplifier has a gain of 25 dB; the following fiber has a length of 100 km and a loss of 0.25 dB/km. This is followed by an inline amplifier having sufficient gain to bring the power level back same as the output power of launching amplifier. The following fiber has the same attenuation with 150 km of length. A preamplifier next boosts the power level of 0.5 mW.
 - (i) Compute the gain of the preamplifier.

(8 marks)

(ii) Plot the signal power level (in dBm) as a function of position along the fiber system.

(2 marks)

-END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2019/2020

COURSE NAME

: FIBER OPTIC TECHNOLOGY

PROGRAMME CODE: BNF

COURSE CODE : BNF 43103

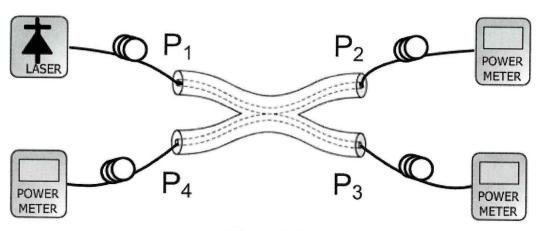


Figure Q4(b)

