UNIVERSITI TUN HUSSEIN ONN MALAYSIA ## FINAL EXAMINATION SEMESTER I **SESSION 2019/2020** COURSE NAME : ELECTRICAL PRINCIPLES I COURSE CODE : BNR 10203 PROGRAMME CODE : BND/ BNE/ BNF EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020 **DURATION** : 3 HOURS INSTRUCTION : ANSWER ALL QUESTIONS **TERBUKA** THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES ## **CONFIDENTIAL** The American Control of the | QI | (a) | support your explanation. | equation to | |----|-----|---|---------------------------| | | | (i) Active and passive elements | (3 marks) | | | | (ii) Kirchhoff current and voltage laws | (3 marks) | | | | (iii) Conductor and semiconductor | (3 marks) | | | | (iv) Branches and nodes | (3 marks) | | | (b) | Consider the circuit shown in Figure Q1(b) with $v = 8e^{-t}$ V and $i = 20e^{-t}$. Compute the power supplied by this element and the energy supple element over the first second of operation. Assume that v and i are zero | ied by the | | | | | (8 marks) | | Q2 | (a) | Determine the equivalent resistance R_{eq} for Figure Q2(a) . | (5 marks) | | | (b) | Calculate the value of V_x for the circuit in Figure Q2(b) , by using node | al analysis.
(7 marks) | | | (c) | Determine the current i_0 in the circuit of Figure Q2(c) by using mesh a | analysis.
(8 marks) | | Q3 | (a) | mpute the value of I_x in Figure Q3(a) by using superposition theorem. (8 marks) | | | | (b) | For the circuit in Figure Q3(b) , (i) Obtain the Thevenin equivalent circuit at terminal a-b | (4 marks) | | | | (ii) Calculate the current through $R_L = 8\Omega$. | (3 marks) | | | | (iii) Estimate the value of R_L so that maximum power deliverable to R_L | (2 marks) | | | | (iv) Solve the maximum power. TERBUKA | (3 marks) | | | | | | #### **CONFIDENTIAL** | -0.000000000000000000000000000000000000 | | | |---|--|--| | (a) | Multiple Choice Questions (Select all that apply) (i) The two input terminals of an op amp are labeled as: (a) high and low. (b) positive and negative. (c) inverting and noninverting. (d) differential and nondifferential | (1 marks | | | | | | | (iii) Which of these amplifiers is used in a digital-to-analog conv (a) noninverter (b) voltage follower (c) summer (d) difference amplifier | verter?
(1 marks | | | (iv) Difference amplifiers are used in (please check all that apply (a) instrumentation amplifiers (b) voltage followers (c) voltage regulators (d) buffers (e) summing amplifiers (f) subtracting amplifiers | y):
(2 marks | | | (a) | (i) The two input terminals of an op amp are labeled as: (a) high and low. (b) positive and negative. (c) inverting and noninverting. (d) differential and nondifferential (ii) For an ideal op amp, which of the following statements are real (a) The differential voltage across the input terminals is zero. (b) The current into the input terminals is zero. (c) The current from the output terminal is zero. (d) The input resistance is zero. (e) The output resistance is zero. (iii) Which of these amplifiers is used in a digital-to-analog conversion (a) noninverter (b) voltage follower (c) summer (d) difference amplifier (iv) Difference amplifiers are used in (please check all that apply (a) instrumentation amplifiers (b) voltage followers (c) voltage regulators (d) buffers (e) summing amplifiers | (b) In the circuit of **Figure Q4(b)**, analyze the output value for v_0 and i_0 . (6 marks) (c) Compute v_o in the op amp circuit of **Figure Q4(c)**. (8 marks) #### CONFIDENTIAL remark the real (a) Determine i(t) and $v_L(t)$ given i(0)=4A for the circuit in **Figure Q5(a)**. Q5 (5 marks) (b) A voltage of $60\cos(4\pi t)V$ appears across the terminals of a 3 mF capacitor. Analyze the current through the capacitor and the energy stored in it from t = 0 to t = 0.125 s. (8 marks) (c) Compute v_c , i_L and energy stored in the capacitor and inductor in the circuit of Figure Q5(c) under DC conditions. (7 marks) - END OF QUESTIONS - # FINAL EXAMINATION SEMESTER/SESSION SEM I/ 2019/2020 PROGRAMME CODE BND/ BNE/ BNF ELECTRICAL PRINCIPLES I COURSE CODE BNR10203 COURSE NAME v Figure Q1 (b) 10Ω 14Ω 2Ω \mathbf{R}_{eq} 5Ω 8Ω Figure Q2(a) 10 V 20Ω 5Ω 20Ω 10Ω \geq 10 Ω 20 V Figure Q2(b) #### FINAL EXAMINATION SEMESTER/SESSION COURSE NAME SEM I/ 2019/2020 ELECTRICAL PRINCIPLES I PROGRAMME CODE COURSE CODE BND/BNE/BNF BNR10203 Figure Q4 (b) Figure Q4(c) #### FINAL EXAMINATION SEMESTER/SESSION COURSE NAME And the state of t SEM I/ 2019/2020 ELECTRICAL PRINCIPLES I PROGRAMME CODE COURSE CODE BND/ BNE/ BNF BNR10203 Figure Q5 (a)