

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2019/2020**

COURSE NAME

DESIGN FOR MANUFACTURE AND

ASSEMBLY (DFMA)

COURSE CODE

BNM 40103

PROGRAMME CODE

: BNM

EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020

DURATION

3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

ONLY

TERBUKA

THIS QUESTION PAPER CONSISTS OF THIRTEEN (13) PAGES

CONFIDENTIAL

BNM 40103

- Manufacturers should consider the application of Design for Assembly (DFA) at all stages of the design process, especially in the early stages. As the design team to conceptualize the alternative solutions, it should give serious consideration to the ease of assembly of the product or subassembly.
 - (a) Discuss how the design team can use DFA in the conceptual design process.

(4 marks)

(b) Explain the DFA approach that leads to the design improvement process.

(4 marks)

(c) Identify the main benefits of implementing the Concurrent Engineering concept in the manufacturing enterprise.

(4 marks)

(d) As a new design engineer appointed by XYZ Engineering Sdn. Bhd., you have been given a task to evaluate the latest product of the company, as shown in **Figure Q1 (d)**. Construct an analysis report by employing the **EIGHT (8)** commandments of DFA in your evaluation process.

(8 marks)

Q2 (a) Boothroyd-Dewhurst DFA Method is a systematic approach to improve the product design process. Based on this method, construct a procedure and process flow for manual assembly design analysis.

(4 marks)

(b) The process of manual assembly can be divided into two separate areas, which are handling (acquiring, orienting and moving the parts) and insertion and fastening (mating a part to another part or group of parts). Explain and demonstrate the design guideline for part handling with the aid of sketch.

(8 marks)

(c) DFA can be employed either for a product with manual or automatic assembly method. Based on the characteristic of the technique, compare and contrast both assembly methods that may influence the decision for the selection of the assembly process.

(8 marks)

Q3 (a) Material and process selection are critical issues in the optimal design of industrial products. Construct a procedure that is commonly used for material—process selection in Design for Manufacture (DFM) analysis.

(4 marks)

(b) Compare the "material first approach" and "process first approach" for material-process selection procedure. Provide an example for each approach.

(8 marks)

(c) Figure Q3 (c) shows a product that needs to be manufactured in a large quantity (>20,000 units). Based on the given information, propose a suitable process and material for the production of the component, and you need to provide the justification for your answer.

(8 marks)

Q4 (a) The heart of any design for manufacturing system is a group of design principles or guidelines that are structured to help the designer reduce the cost and difficulty of manufacturing an item. Summarize FIVE (5) design guidelines or rules for product that easily and economically manufactured.

(10 marks)

- (b) Figure Q4 (b) shows the turning operation to produce the flat surface where, it is accomplished by moving the cutting tool against the axis of workpart rotation. Given are the diameter of workpart ($d_m = 30 \text{ mm}$), feed rate (f = 0.5 mm/min), ($a_p = 1 \text{mm}$) and workpart rotational speed ($n_w = 800 \text{ rev/min}$). Determine;
 - (i) Machining time, (t_m)

(4 marks)

(ii) Cutting speed, (v_c)

(3 marks)

(iii) Maximum Material Removal Rate, (Z_{wmax} (MRR))

(3 marks)

ar sharped inclose for more

Q5 Figure **Q5** is an exploded drawing of clamp light assembly. By using Boothroyd/Dewhurst DFMA method;

(Note: Refer Table Q5 (a) and Q5 (b) as a guide. Use Table Q5 (c) to write your answer)

(a) Calculate the total assembly time and design efficiency of the component for manual assembly.

(16 marks)

(b) Justify the components that can be eliminated and redesign.

(4 marks)

A batch of 18 cm diameter disks with a thickness of 4 mm are molded from Acrylonitrile-butadiene-styrene (ABS) in a six-cavity mold. Recommend the appropriate size for the injection molding machine for molding the disks. Start the analysis by determining the following information;

(Note: Refer Table Q6 (a), Q6 (b) and Q6 (c) as a guide.)

(a) Total projected shot area

(5 marks)

(b) Maximum cavity pressure

(5 marks)

(c) Maximum separating force, F

(5 marks)

(d) Maximum clamp force

(5 marks)

END OF QUESTION

SEMESTER / SESSION : SEM I / 2019/2020

COURSE NAME

: DESIGN FOR MANUFACTURE

AND ASSEMBLY (DFMA)

PROGRAMME CODE: BNM

COURSE CODE

: BNM 40103

Figure Q1 (d)

Figure Q3 (c)

SEMESTER / SESSION : SEM I / 2019/2020 **COURSE NAME**

: DESIGN FOR MANUFACTURE

AND ASSEMBLY (DFMA)

PROGRAMME CODE: BNM

COURSE CODE : BNM 40103

Figure Q4 (b) – Turning Operation (Facing)

Ponsuaran Fak in termini kamutaran Ur

SEMESTER / SESSION : SEM I / 2019/2020 **COURSE NAME**

: DESIGN FOR MANUFACTURE

AND ASSEMBLY (DFMA)

PROGRAMME CODE: BNM

COURSE CODE : BNM 40103

CLAMP LIGHT - Exploded View

I		PROCESS	MATERIAL	FINISH	DIMENSION (mm
136	Lamp Head	Spinning	Aluminum	Spray Paint	100 x 35
5	Screw	Cold Forged	Steel	Chrome Plated	10 x 9
20	Internal Housing	Rolled	Aluminum	Anodized	85 x 53
5	Lamp Head	Spinning	Aluminum	Spray Paint	105 x 130
3	Gooseneck	Stamped & Rolled	Steel	Chrome Plated	22 x 395
Á	Clamp	Stamping	Aluminum	Spray Paint	110 x 605 x 65
9	Book Binding Screw	Cold Forged	Steel	Chrome Plated	10 x 62
n	Nut	Hot Forged	Steel	Galvinized	28 x 4
6	Spring	Rolled	Steel	Chrome Plated	110 x 604 x 66

SEMESTER / SESSION : SEM I / 2019/2020 **COURSE NAME**

: DESIGN FOR MANUFACTURE

AND ASSEMBLY (DFMA)

PROGRAMME CODE: BNM

				I	parts	are easy t	o grasp a	ind manip	ulate	parts	present h	andling	difficultie	(1)	
					thick	cness > 2	mm	thickness	≤ 2 mm	s 2 mm thick		ckness > 2 mm		thickness ≤ 2 mr	
Key:		1 005 114	·ID		size >15 mm	6 mm≤ size ≤15 mm	size <6 mm	size >6 mm	size ≤6 mm	size >15 mm	6 mm≤ size ≤15 mm	size <6 mm	size >6 mm	size ≤6 mm	
		ONE HAI	ND		0	1	2	3	4	5	6	7	8	9	
sls	(m.t.	β) < 360°		0	1.13	1.43	1.88	1.69	2.18	1.84	2.17	2.65	2.45	2.98	
d ng tools	(α+	μ) < 300		1	1.5	1.8	2.25	2.06	2.55	2.25	2.57	3.06	3	3.38	
ed and le hand grasping	The Court of	$0 \le (\alpha + \beta)$ $0 < 540^{\circ}$		2	1.8	2.1	2.55	2.36	2.85	2.57	2.9	3.38	3.18	3.7	
grasp by or id of	540	$0 \le (\alpha + \beta)$		3	1.95	2.25	2.7	2.51	3	2.73	3.06	3.55	3.34	4	
parts can be gra manipulated by without the aid		< 720°		_											
parts can be manipulated without the a		m 7200						ezers for g				Towns of the last	P	- DO C	
part man with	(α+	$(\alpha + \beta) = 720^{\circ}$				parts can be manipulated without part optical magnification for							and	sping	
		ONEH	IAND		parts are easy par to grasp and han			oresent ing ulties (1)	parts are easy to grasp and manipulate				parts need standard tools other than tweezers	parts need special tools for grasping and manipulation	
		GRASPIN		S	thickness > 0.25 mm	thickness	thickness	T-	thickness	thickness	thickness > 0.25mm	thickness ≤ 0.25mm	ools weez	parts tools	
(luo		0 ≤ β ≤ 180°	1		0	1	2	3	4	5	6	7	8	9	
d but tools	≤ 180°	3 100		4	3.6	6.85	4.35	7.6	5.6	8.35	6.35	8.6	7	7	
grasped and by one hand but only of grasping tools	ğ	β = 360°		5	4	7.25	4.75	8	6	8.75	6.75	9	8	8	
grasp by or of gra		0 ≤ β		6	4.8	8.05	5.55	8.8	6.8	9.55	7.55	9.8	8	9	
parts can be gramanipulated by with the use of	= 360°	≤ 180°	1	7	5.1	8.35	5.85	9.1	7.1	9.55	7.85	10.1	9	10	
parts c manipu with th	8	β = 360°	/			narts n	resent n	o addition	al	parts pr	esent add	itional h	andling di	fficultie	
ă E 3			Y		parts present no handling dif			$\alpha = 360^{\circ}$		(e.g. sticky, delicate, s α ≤ 180°		licate, s	slippery, etc.) (1) $\alpha = 360^{\circ}$		
						α ≤ 180					6 mm ≤	size	size	size	
		TWO H		S	size > 15 mm	size ≤ 15 mm	< 6 mm	size > 6 mm	size ≤ 6 mm	size > 15 mm		< 6 mm	> 6 mm	≤ 6 m	
		MANIPU	LATIC	N	0	1	2	3	4	5	6	7	8	9	
		y nest or flexible		8	4.1	4.5	5.1	5.6	6.75	5	5.25	5.85	6.35	7	
but can	be g	rasped and	1										Personal	THE PERSON NAMED IN	
lifted by (with th	e use	of	/		F	arts can	be handl	ed by one	person v	vithout m	echanical	assistan	_	s for	
grasping						parts do	not sev	erely nest	or tangle	and are	not flexib	le	ja ja	tool	
						part wei	ght < 10	lb	pa	arts are he	eavy (> 10		y nest	ecial	
		TWO H			parts a grasp a manipu		other	present handling ulties (1)	parts a grasp a manipu		other h	resent nandling Ities (1)	parts severely r tangle or are flexible (2)	parts need special tools for erasoine and manipulation	
		require LARGE				T		$\alpha = 360^{\circ}$	1	1	α≤180°	$\alpha = 360$	parts tangle flexibl	parts I	
		equired for	1		0	1	2	3	4	5	6	7	8	9	
two ha	inas r	equireu ioi													

SEMESTER / SESSION : SEM I / 2019/2020

COURSE NAME : DESIGN FOR MANUFACTURE

AND ASSEMBLY (DFMA)

PROGRAMME CODE: BNM

<u> </u>						ssembly no ho ntain orientat in (3)			ired	holding down required during subsequent processes to maintain orientation or location (3)				uent
					easy to position assembl		pos	t easy to sition dur embly		easy to align and position during assembly (4)		po	et easy to esition dur sembly	
	Key:	PART AD	DED	re te	esistance o nsertion	resistance to insertion (5)	no resista to inserti	to	sistance sertion (5)	no resistance to insertion	resistance to insertion (5	no resist to) insert	to	esistance o nsertion (5)
		NOT SEC	JRED	+	0	1		2	3	6	7		8	9
	part and	associated	7		1.5	2.5		2.5	3.5	5.5	6.5	(5.5	7.5
neithe art is	tool (inc hands) c reach th	an easily e desired	1	1	4	5		5	6	8	9		9	10
addition of any part (1) where neither the part iself nor any other part is finally secured immediately	location	lue to ob-	1	2	5.5	6.5		6.5	7.5	9.5	10.5	10	0.5	11.5
addition of any part (1) where the part itself and/or other parts are the the part itself and/or other parts are fire	part and	PART SE IMMED PART SE IMMED associated tool hands) can che the desired and the tool perated easily due to obstructed access or restricted vision (2) due to			fits, circlin, and particular of the state o		(b) Mostition during assembly (4)	not easy position assembly or six status of the control of the con		easy to align and position during position during assembly (4)	not easy to a position durassembly service of the constant of		easy to align and position with no position with no torsional resistance to torsional resistance to	not easy to align or position and/or torsional resistance (5)
additio part its	part and as cluding ha reach desir cannot be	see pure to obstructed access and restricted vision (2)			(part(s) secured	nical fastening already in pla I immediately	ce but after in	not	(part(s) already in	astening proc place but no tely after inse	t	non-f	fastening esses
		SEPAR OPERA			bending or similar processes d u	similar processes similar processes	screw tightening (6) 9 or other processes	snap fit, snap clip, press fit, etc.		21	weld/braze brocesses cesses cesses cesses cesses	chemical processes (e.g. adhesive bonding, etc.)	manipulation of parts or sub-assembly (e.g.	adjustment or parts), etc.) other processes (e.g. liquid insertion, etc.)
1		processes	1		0	1	2	3	4	5	6	7	8	9

SEMESTER / SESSION : SEM I / 2019/2020 COURSE NAME

: DESIGN FOR MANUFACTURE

AND ASSEMBLY (DFMA)

PROGRAMME CODE: BNM

	Table Q5 (c)				ESIGN	FOR MA	NUAL	ASSEN	MBLY - WORKSHEET
1	2	3	4	5	6	7	8	9	
Part No	Operations	Handling Code	Handling Time	Insertion Code	Insertion Time	Operation Time	Operation Cost	Minimum No Parts	Name of Assembly
									Design Efficiency = 3 X NM =
						TM	CM	NM	TM

SEMESTER / SESSION : SEM I / 2019/2020 **COURSE NAME**

: DESIGN FOR MANUFACTURE

AND ASSEMBLY (DFMA)

PROGRAMME CODE: BNM

Table Q6 (a)	Processing	Data fo	r Selected	Polymers
--------------	------------	---------	------------	----------

Thermoplastic	Specific gravity	Thermal diffusivity (mm²/s)	Injection temp. (°C)	Mold temp. (°C)	Ejection temp. (°C)	Injection pressure (bars)
High-density polyethylene	0.95	0.11	232	27	52	965
High-impact polystyrene	1.59	0.09	218	27	77	965
Acrylonitrile- butadiene-styrene (ABS)	1.05	0.13	260	54	82	1000
Acetal (homopolymer)	1.42	0.09	216	93	129	1172
Polyamide (6/6 nylon)	1.13	0.10	291	91	129	1103
Polycarbonate	1.20	0.13	302	91	127	1172
Polycarbonate (30% glass)	1.43	0.13	329	102	141	1310
Modified polyphenylene oxide (PPO)	1.06	0.12	232	82	102	1034
Modified PPO (30% glass)	1.27	0.14	232	91	121	1034
Polypropylene (40% talc)	1.22	0.08	218	38	88	965
Polyester teraphthalate (30% glass)	1.56	0.17	293	104	143	1172

SEMESTER / SESSION : SEM I / 2019/2020 **COURSE NAME**

: DESIGN FOR MANUFACTURE

AND ASSEMBLY (DFMA)

PROGRAMME CODE: BNM

Table Q6 (b)	Runner Volumes (Du Pont)					
Part volume (cm³)	Shot size (cm ³)	Runner				
16	22	37				
32	41	28				
64	76	19				
128	146	14				
256	282	10				
512	548	7				
1024	1075	5				

Injection Molding Machines Table Q6 (c)

Clamping force (kN)	Shot size (cc)	Operating cost (\$/h)	Dry cycle times (s)	Maximum clamp stroke (cm)	Driving power (kW)
300	34	28	1.7	20	5.5
500	85	30	1.9	23	7.5
800	201	33	3.3	32	18.5
1100	286	36	3.9	37	22.0
1600	286	41	3.6	42	22.0
5000	2290	74	6.1	70	63.0
8500	3636	108	8.6	85	90.0

SEMESTER / SESSION : SEM I / 2019/2020

: DESIGN FOR MANUFACTURE **COURSE NAME**

AND ASSEMBLY (DFMA)

PROGRAMME CODE: BNM

COURSE CODE

: BNM 40103

LIST OF FORMULA;

$$EM = \frac{3 \times NM}{TM}$$

$$C_{ds} = 120 + 0.36 A_u$$

$$t_m = \frac{d_m}{2 f n_w}$$

$$X_p = \frac{P^2}{LW}$$

$$v_{\max} = \pi n_{w} d_{m}$$

$$M_p = M_{po} f_{lw} f_d$$

$$Z_{w_{\max}} = \pi f a_p n_w d_m$$

Total Die Cost =
$$C_{ds} + (M_{po} + M_{pc} + M_{ps})R$$

$$F(kN) = A(m^2) \times P_{max}(kN/m^2)$$

$$M_{po} = 23 + 0.03 LW$$

$$t_f = \frac{V}{Q_{av}} = \frac{2V_s p_j}{P_j}$$

$$t_f = \frac{V}{Q_{av}} = \frac{2V_s p_j}{P_j}$$

$$t_{pc} = 8 + 0.6P + 3N_p$$

$$t = -70 \ln (c) - 1 (chamfer) + 3.7 L + 0.75 d$$

$$M_{pc} = 8 + 0.6P + 3N_{p}$$

