UNIVERSITI TUN HUSSEIN ONN MALAYSIA # FINAL EXAMINATION SEMESTER I SESSION 2019/2020 **COURSE NAME** : SOLID MECHANICS COURSE CODE : BNJ 20903 PROGRAMME CODE : BNM/BNL EXAMINATION DATE : DECEMBER 2019 / JANUARY 2020 **DURATION** : 3 HOURS **INSTRUCTION** ANSWER FIVE (5) QUESTIONS ONLY TERBUKA THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES CONFIDENTIAL | Q1 | (a) The Figure Q1 (a) shows the beam is subjected to a moment of 20 kN.m. | | | | | | | |---------------|--|--|--|---|-----------|--|--| | (i) Calculate | | | Calculate the centroid and mon | d moment of inertia of cross-section of the beam. (6 marks) | | | | | | | (ii) | Calculate the maximum tensile | and compressive stress. | (4 marks) | | | | | (b) | The Figure Q1 (b) shows the compound beam is fixed at A, pin conne supported by a roller at C. The beam is rectangular cross-section 100 m mm length. | | | | | | | | | (i) | | (2 marks) | | | | | | | (ii) | | | (3 marks) | | | | | | (iii) | | | (3 marks) | | | | | | (iv) | | 1 stress. | (2 marks) | | | | Q2 | Rod AB consists of two cylindrical portions AC and BC, each with a cross-sectional area 1750 mm ² . Portion AC is made of a mild steel with E = 200 GPa and σ_y = 250 MPa, a portion BC is made of a high-strength steel with E = 200 GPa and σ_y = 345 MPa. A load applied at C as shown in Figure Q2 . If P is gradually increased from zero until the deflect of point C reaches a maximum value δ_m = 0.3 mm and then decreased back to zero. | | | | | | | | | (a) | Evalua | aluate the maximum value of P. (8 | | | | | | | (b) | Evalua | valuate the maximum stress in each portion of the rod. | | (6 marks) | | | | | (c) | Calcu | alculate deflection of C after the load removed. | | | | | | Q3 | The Figure Q3 shows the shaft is made of A992 steel (Modulus of Elasticity = the allowable shear stress, $\tau_{\text{allow}} = 75$ MPa. If a gear B supplies 15 kW of power A, C and D withdraw 6 kW, 4 kW, and 5 kW, respectively. Determine: | | | | | | | | | (a) | The ar | ngular velocity of the shaft, ω . | | (2 marks) | | | | | (b) | The to | e torque exerted on gears A (T _A), C(T _c) and D (T _D). | | | | | | | (c) | The required minimum diameter d of the shaft in mm. | | | | | | | | (d) | The a | ngle of twist. | TERBUKA | (4 marks) | | | | CONFIDENTIAL BNJ 20903 | | | | | | | | |------------------------|-----|---|---|--|--|--|--| | Q4 | (a) | An el | ement of material subjected to plane strain as shown in Figure s as follows: $\epsilon_x = -150 \text{ x } 10^{-6}$, $\epsilon_y = 450 \text{ x } 10\text{-}6$ and $\gamma_{xy} = 200 \text{ x } 10^{-6}$. | Q4 (a) has | | | | | | | (i) | Identify the strains for an element oriented at angle $\theta = 50^{\circ}$, $(\epsilon_{x'}, \epsilon_{y'}, \epsilon_{y'},$ | | | | | | | | (ii) | Determine these strains on a sketch of properly oriented element. | (3 marks) | | | | | | (b) | Deter | mine the equivalent state of stress in Figure Q4 (b) by using Mohr's | ure Q4 (b) by using Mohr's Circle. | | | | | | | (i) | Sketch of the Mohr's circle. Determine σ_{avg} , point A, point C and 1 circle. | adius of the | | | | | | | | | (6 marks) | | | | | | | (ii) | Determine in-plane principle stress, σ_1 , σ_2 . | | | | | | | | (iii) | Determine orientation of the principle plane, θ_{p1} . Determine maximum in-plane shear stress, $\tau_{max\ in-plane}$. Determine of the plane of maximum in-plane shear stress, θ_{s} | (2 marks) | | | | | | | (iv) | | (2 marks) | | | | | | | (v) | | | | | | | | | | | (2 marks) | | | | | Q5 | (a) | (a) The Figure Q5 (a) shows the steel channel is used to reinforce the wood bear | | | | | | | | | (i) | Determine the centroid, \bar{y} and moment of inertia, I of the transform | ned section.
(4 marks) | | | | | | | (ii) | Determine the maximum bending stress of the steel and the wood, | σ_{steel} , σ_{wood} . (4 marks) | | | | | | (b) | mm a | The Figure Q5 (b) shows the tube is made copper and has an outer diameter of 35 mm and a wall thickness of 7 mm. Determine the eccentric load P that it can support without failure using Euler's Formula and Secant Formula. The tube is pin supported at its ends. $E_{copper} = 120 \text{ GPa}$, $\sigma_{max} = 750 \text{ MPa}$. | | | | | | | | | | (12 marks) | | | | | Q6 | The | Figure | Q6 shows the pipe assembly is fixed at A. TRRBUKA | | | | | | | (a) | Determine the internal loadings. (4 mar | | | | | | | | (b) | Dete | ermine the torsional strain energy, J and bending strain energy, I. (8 marks | | | | | | | (c) | Dete | rmine the strain energy stored in pipe. | (6 marks) | | | | -END OF QUESTION- (d) (e) Determine the external work or external force. (2 marks) (2 marks) (4 marks) Determine the conservation of energy and vertical displacement of end C, Δc . ## FINAL EXAMINATION SEMESTER / SESSION : SEM I / 2019/2020 PROGRAMME CODE: BNM/BNL **COURSE** : SOLID MECHANICS **COURSE CODE** Figure Q1 (a) # FINAL EXAMINATION SEMESTER / SESSION : SEM I / 2019/2020 PROGRAMME CODE: BNM/BNL **COURSE** : SOLID MECHANICS COURSE CODE Figure Q2 Figure Q3 **COURSE** ## FINAL EXAMINATION SEMESTER / SESSION : SEM I / 2019/2020 : SOLID MECHANICS PROGRAMME CODE: BNM/BNL **COURSE CODE** Figure Q4 (a) ## FINAL EXAMINATION $SEMESTER / SESSION \quad : SEM I / 2019/2020$ PROGRAMME CODE: BNM/BNL **COURSE** : SOLID MECHANICS COURSE CODE Figure Q5 (a) Figure Q5 (b) Figure Q6