

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2018/2019

COURSE NAME

STATICS

COURSE CODE

BNP 10102

PROGRAMME CODE :

BNA/BNB/BNC

EXAMINATION DATE :

JUNE/JULY 2019

DURATION

2 HOURS 30 MINUTES

INSTRUCTION

ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF ELEVENTH (11) PAGES

TERBUKA

CONFIDENTIAL

(ii)

Q1 Define the meaning of vector and scalar. (a) (3 marks) (b) Briefly explains the different between point load and distributed load. (3 marks) (c) Solve the rersultant moments of the three forces in Figure Q1(c) at x-axis, y-axis and z-axis. (9 marks) (d) Two children are swinging from 12 ft long jungle gym that weights 50 lbs as shown in Figure Q1(d). Given child C weights 80 lbs and child D weights 70 lbs. (i) Draw free body diagram (4 marks) (ii) Calculate the reaction for the pin at A and roller at B. (6 marks) Q2State the friction laws for dry surfaces on horizontal surface. (a) (5 marks) (b) A man pushes a 100 kg box up an incline horizontally with a force P of 700N as shown in Figure Q2(b). Given the coefficient of friction between the box and plane are μ_s = 0.3 and $\mu_k = 0.2$. (i) Draw the free body diagram (FBD) of the block. (3 marks) Determine whether the block is in equilibrium and find the value of the (ii) friction force (7 marks) A dockworker adjust a rope which keeps a ship from drifting alongside a wharf. If he (c) exerts a pull of 150 N on the rope, which has 3 full turns around the mooring bit and creating the tension in the rope is 7500 N as shown in Figure Q2(c). (i) Calculate the coefficient of friction between ropes.

(4 marks)

the rope has 4 full turns around the mooring bit.

Analyze the tension in the rope that could be resisted by 200 N force and that

CONFIDENTIAL

BNP 10102

Q3 (a) List THREE (3) main types of centroid.

(6 marks)

(b) Using the method of composite curves, determine the centroidal coordinates of the line in Figure Q3(b) that consists of the circular arc 1, and the straight lines 2 and 3.

(8 marks)

(c) Calculate the location of the centroid of the shaded area shown in Figure Q3(c).

(11 marks)

Q4 (a) Briefly explain the moment of inertia for a simple area.

(3 marks)

(b) Determine the moment of inertia at x-axis and y-axis, and analyze the radius of gyration of the composite areas as shown in Figure Q4(b).

(10 marks)

(c) Calculate the moment of inertia of the composite area about the x-axis and y-axis as shown in Figure Q4(c).

(12 marks)

SEMESTER / SESSION : SEM II/ 2018/2019

COURSE NAME

: STATICS

PROGRAMME CODE: BNA/BNB/BNC

Figure Q1(c) Three forces acting on the box

Figure Q1(d) Two children swinging from long jungle gym

SEMESTER / SESSION : SEM II / 2018/2019

COURSE NAME

: STATICS

PROGRAMME CODE: BNA/BNB/BNC

Figure Q2(b) Man pushes a 100kg box

Figure Q2(c) A rope which keeps a ship from drifting alongside a wharf

SEMESTER / SESSION : SEM II / 2018/2019

COURSE NAME

: STATICS

PROGRAMME CODE: BNA/BNB/BNC

COURSE CODE

: BNP 10102

Figure Q3(b)

Figure Q3(c)

SEMESTER / SESSION : SEM II / 2018/2019 **COURSE NAME**

: STATICS

PROGRAMME CODE: BNA/BNB/BNC

COURSE CODE

: BNP 10102

Figure Q4(b)

Figure Q4(c)

SEMESTER / SESSION : SEM II / 2018/2019

COURSE NAME : STATICS

PROGRAMME CODE: BNA/BNB/BNC

Table 1: Centroid of Line

Shape		\bar{x}	\bar{y}	$ar{z}$
Quarter- circular arc		$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc		0	$\frac{2r}{\pi}$	πr

SEMESTER / SESSION : SEM II / 2018/2019

COURSE NAME

: STATICS

PROGRAMME CODE: BNA/BNB/BNC

Table 2: Centroid of Areas

	Shape	\overline{X}	\overline{y}	Α
Triangle	$ \begin{array}{c c} & y \\ & \overline{y} \\$	<u>b</u> 3	<u>h</u> 3	$\frac{1}{2}bh$
Semicircle		0	$\frac{4r}{3\pi}$	<u>π·²</u> 2
Quarter circle	\bar{x}	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Rectangle	$ \begin{array}{c cccc} & y & & & & & \\ & \overline{x} & & & & & \\ & & & & \overline{y} & & \\ & & & & & & \\ & & & & & & \\ & & & &$	<u>b</u> 2	<u>h</u> 2	bh
Parabolic spanderl	$\begin{array}{c c} y \\ \hline \\$	3b 4	3h 10	<u>bh</u> 3

SEMESTER / SESSION : SEM II / 2018/2019

COURSE NAME : STATICS

PROGRAMME CODE: BNA/BNB/BNC

Table 3: Moment of Inertia

Shape		Equation		
Triangle	$\begin{array}{c c} y \\ \hline \\ h \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\$	$I_x = \frac{bh^3}{36}, I_y = \frac{b^3h}{36}$		
Semicircle	$ \begin{array}{c c} \hline & y \\ \hline & \frac{1}{3\pi} \\ \hline & \frac{\overline{y}}{1} \end{array} $	$I_x = 0.1098R^4$, $I_y = \frac{1}{8}\pi R^4$ $J = \frac{1}{4}\pi r^4$		
Rectangle	$\begin{array}{c c} y \\ \hline h & \hline \\ \hline b & \hline \\ \hline \end{array}$	$I_x = \frac{bh^3}{12}, I_y = \frac{b^3h}{12}$ $J = \frac{1}{12}bh(b^2 + h^2)$		
Circle	y x	$I_x = I_y = \frac{1}{4}\pi r^4$ $J = \frac{1}{2}\pi r^4$		

SEMESTER / SESSION : SEM II / 2018/2019

COURSE NAME

: STATICS

PROGRAMME CODE: BNA/BNB/BNC

COURSE CODE : BNP 10102

Equations:

$$\sum F_x = 0$$

$$\textstyle\sum F_y=0$$

$$\sum M = 0$$

$$F_{s}=F_{max}=\mu_{s}\;N=\mu_{s}\left(W\right)$$

$$F = \mu_k N = \mu_k (W)$$

$$W = mg$$

$$T_2 = T_1 e^{\mu\beta}$$

$$ln\frac{T_2}{T_1} = \mu\beta$$

$$\bar{x} = \frac{\sum xL}{\sum L}, \qquad \bar{y} = \frac{\sum yL}{\sum L}$$

$$\bar{x} = \frac{\sum xA}{\sum A}$$
, $\bar{y} = \frac{\sum yA}{\sum A}$

$$I_{xx} = I_x + Ad^2$$

$$I_{yy} = I_y + As^2$$

VIOLEN INTO

$$k_x = \sqrt{\frac{I_{xx}}{A}}, \quad k_y = \sqrt{\frac{I_{yy}}{A}}$$