

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2011/2012

COURSE NAME : LOGIC SYSTEM

COURSE CODE : DAE 21603 / DEE 2223

PROGRAMME : 2 DAE / 2 DAL / 2 DEE

EXAMINATION DATE : MARCH 2012

DURATION : 2 ½ HOURS

INSTRUCTIONS : ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

DAE 21603/ DEE 2223

Q1	(a)	When the SET and RESET inputs are both high; it is usually referred to as invalid.		
		 (i) Explain why it is <i>invalid</i>. (ii) Named the logic gates used for this type of latch. 		
		(3 marks)		
	(b)	For an active-LOW S-R latch, draw the logic symbol and the truth table.		
		(4 marks)		
	(c)	Explain the difference between the operation of a gated S-R latch and an S-R flip flop.		
		(4 marks)		
	(d)	(d) For a D flip-flop in Figure Q1(d);		
		 (i) Draw the output waveform Q, relative to the input. (Note: Draw the output waveform in space provided in Figure Q1(d)(i)). (ii) What specific function does this device perform? 		
		(4 marks)		
	Draw the output waveform Q, if the input signal as in Figure Q1(e) is applied to a negative edge-triggered J-K flip-flop. Assume that Q is initially LOW.			
		(5 marks)		
Q2	(a)	With the 555 Timer IC and RC component, draw the complete schematic diagram for the operation of;		
		(i) monostable (one-shot)(ii) astable multivibrator.		
		(ii) astable multivibrator. (8 marks)		
(b) Determine the time width (t_w) for monostable (One-Shot) if given $E = 9 \text{ V}$, $R = C = 10 \text{nF}$.				
		(3 marks)		
(c) Determine the value of external resistor for a 555 Timer used as a with output frequency of 10 kHz, C=0.001 μ F and duty cycle of 7		Determine the value of external resistor for a 555 Timer used as an astable multivibrator with output frequency of 10 kHz, C=0.001 μ F and duty cycle of 75%.		
		(9 marks)		
		2		

Q3	(a)	A BCD decade counter is shown in Figure Q3(a)(i). The waveforms (Figure Q are applied to the clock and clear input as indicated. Determine the waveforms of the counter output $(Q_0, Q_1, Q_2, \text{ and } Q_3)$. The clear is synchronous, and the c started at the binary 1000 state. (Note: Draw the output waveform in space pro Figure Q3(a)(ii)).	tor each counter is	
		(1	0 marks)	
	(b)	A 4-bit ripple counter consists of flip-flop that each has a propagation delay fr to Q output of 12ns. How long it takes for the counter to recycle from 1010 to 1	om clock 011?	
			(2 marks)	
	(c)	How many state does a modulus-12 counter have? What is the minimum numb flops required?	er of flip-	
			(2 marks)	
	(d)	Draw logic diagrams to compare asynchronous counter with synchronous Use at least two flip-flops for each diagram.	s counter.	
			(6 marks)	
Q4	Q4 The state diagram of a synchronous sequential circuit is shown in Figure Q4. Des sequential circuit using the positive edge-triggered J-K flip-flop based on the following s			
	(a)	State table.	(3 marks)	
	(b)	J-K flip flop excitation table.	(2 marks)	
	(c)	J-K flip flop input equations, minimized using the Karnaugh's Map.	(9 marks)	
	(d)	Draw the circuit implementation.	(6 marks)	
Q5	(a)	State two functions of a register.	(2 marks)	
	(b)	Name four types of registers.	(4 marks)	

DAE 21603/ DEE 2223

	(c)	The operation of the shift register IC 74HC164 is serial in/ parallel out. The logic diagram is shown in Figure Q5(c)(i). If serial data input is fed as in Figure Q5(c)(ii) draw the expected parallel output relative to the positive edge-triggered clock.		
			(12 marks)	
Q 6	(a)	Explain the difference between static RAM and dymanic RAM.		
			(4 marks)	
	(b)	Describe the function of the following lines in a memory device.		
		(i) address lines (ii) data lines		
		(ii) data lines (iii) chip select	(6 marks)	
	(c)	There are three major operations in flash memory. List all of them.		
			(3 marks)	
	(d)	What is the total bit capacity of a ROM that has 14 address lines and 8 data of		
			(3 marks)	
	(e)	Explain the differences between a magneto-optical disk and a CD-ROM.	(4 orles)	
			(4 marks)	
Q 7	(a)	Briefly explain what is a programmable logic device (PLD)		
			(2 marks)	
	(b)	Name the three (3) modes of operation for a GAL 16V8A.		
			(3 marks)	
	(c)	For the complete PLD design file as shown on Figure Q7		
		(i) Draw the complete state diagram		
			(5 marks)	

(ii) Draw the waveform diagram. It should include the following pins CLK, QD, QC, QB, QA, GT9

(10 marks)

SEMESTER / SESSION : SEMESTER II / 2011/2012

PROGRAM: 2 DAE / DAL / DEE

COURSE NAME: LOGIC SYSTEM

COURSE CODE: DAE 21603/ DEE2223

FIGURE Q3(a)(i)

FIGURE Q3(a)(ii)

SEMESTER / SESSION : SEMESTER II / 2011/2012

COURSE NAME: LOGIC SYSTEM

PROGRAM: 2 DAE / DAL / DEE

COURSE CODE: DAE 21603/ DEE2223

FIGURE 4

FIGURE 5(c)(i)

SEMESTER / SESSION : SEMESTER II / 2011/2012

COURSE NAME: LOGIC SYSTEM

PROGRAM: 2 DAE / DAL / DEE

COURSE CODE: DAE 21603/ DEE2223

```
Name Logic Systems;
PartNo 002;
Date 2/12/12;
Revision 01;
Designer Engineer B.Eng.;
Company UTHM;
Assembly None;
Location Parit Raja;
; /* CLOCK INPUT
PIN 1 = CLK
                    ; /* COUNT ENABLE
PIN 2 = !E
                    ; /* OUTPUT ENABLE
PIN 11 = !OE
PIN [14..17] = [QA,QB,QC,QD] ; /* COUNTER OUTPUTS
PIN 12 = GT9 ; /* */
field COUNTER = [QD,QC,QB,QA];
Sdefine SO 'b'0000
$define S1 'b'0001
           'b'0010
Sdefine S2
Sdefine S3
           'b'0011
Sdefine S4
           'b'0100
 Sdefine S5 'b'0101
 Sdefine S6
           'b'0110
 Sdefine S7 'b'0111
 $define $8 'b'1000
 $define S9 'b'1001
 Sdefine S10 'b'1010
 Sdefine S11 'b'1011
 Sdefine S12 'b'1100
 Sdefine S13 'b'1101
 Sdefine S14 'b'1110
 Sdefine S15 'b'1111
 sequence COUNTER
                                       S10:
                           if E
                                  next
         present S0
                                 next S0;
                           default
                                        S5;
                           if E
                                  next
          present S10
                                        S10;
                           default next
                                   next S15;
                           if E
          present S5
                           default next
                                   next S3;
                           if E
          present S15
                                            S15;
                           default next
                                   next S12;
                           if E
          present S3
                                            S3;
                           default next
                                   next S6;
                           if E
          present S12
                                            S12:
                           default next
                                   next S9;
                           if E
          present S6
                           default next
                                            S6;
                                   next S8;
          present S9
                           if E
                                            S9:
                            default next
                                   next S1;
                            if E
          present S8
                                            S8;
                            default next
                                        S0;
                            if E
                                   next
          present S1
                                            S1;
                            default next
    GT9 = COUNTER:[10,15,12];
                                                      FIGURE 7
```

SEMESTER / SESSION : SEMESTER II / 2011/2012

COURSE NAME: LOGIC SYSTEM

PROGRAM: 2 DAE / DAL / DEE

COURSE CODE: DAE 21603/ DEE2223

FIGURE 5(c)(ii)

SEMESTER / SESSION: SEMESTER II / 2011/2012

COURSE NAME: LOGIC SYSTEM

PROGRAM: 2 DAE / DAL / DEE

COURSE CODE: DAE 21603/ DEE2223

FIGURE Q1(d)

FIGURE Q1(d)(i)

FIGURE Q1(e)