

## UNIVERSITI TUN HUSSEIN ONN MALAYSIA

# **FINAL EXAMINATION SEMESTER II SESSION 2018/2019**

**COURSE NAME** 

FUNDAMENTAL OF PLANT

**TECHNOLOGY** 

COURSE CODE

BNL 20103

PROGRAMME CODE

BNL

EXAMINATION DATE : JUNE / JULY 2019

**DURATION** 

: 2 HOURS 30 MINUTES

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

TERBUKA

CONFIDENTIAL

## CONFIDENTIAL

BNL 20103

Q1 (a) Define the term endothermic and exothermic process in terms of heat and enthalpy.

(4 marks)

- (b) Calculate the energy/enthalpy required or consumed for the following reactions by using the bond energy as shown in **Table Q1** (b), and estimate either the reactions is exothermic or endothermic process.
  - (i) Chlorination of methane

$$H-CH_3 + Cl_2 \longrightarrow CH_3 + H-Cl$$

(8 marks)

(ii) Combustion of octane

$$2C_8H_{18}(g) + 25O_2(g) \longrightarrow 16CO_2(g) + 18H_2O(l)$$
 (8 marks)

Q2 (a) Compute the percentage of hydrogen, carbon and oxygen in pentanol ( $C_5H_{11}OH$ ), where the molar mass of C = 12.01 (g/mol), H = 1.01 (g/mol) and O = 16 (g/mol), respectively.

(8 marks)

(b) A mixture of gases is analyzed and found to have the following composition as shown in **Table Q2** (b). Determine the mass of 6 mol of the gas mixture.

(12 marks)

Q3 (a) 
$$2Bi + 3S \longrightarrow Bi_2S_3$$

2.5 kg of bismuth (MW = 209) is heated along with 0.5 kg of sulfur (MW = 32) to form  $Bi_2S_3$  (MW = 514). At the end of the reaction, the mass is extracted and the free sulfur recovered is 5 % of the reaction mass. Calculate:

- (i) The limiting reactant
- (ii) The percent excess reactant
- (iii) The percent conversion of sulfur to Bi<sub>2</sub>S<sub>3</sub>

(10 marks)

## CONFIDENTIAL

#### BNL 20103

- (b) An aqueous solution of sodium hydroxide contains 30 % NaOH by mass. It is desired to produce a 12 % NaOH solution by diluting a steam of the 30 % solution with a stream of pure water as shown in **Figure Q3 (b)**.
  - (i) Calculate the ratios of (g H<sub>2</sub>O / g feed solution) and (g product solution / g feed solution).
  - (ii) Determine the feed rates of 30 % solution and diluting water needed to produce 1048 kg/min of the 12 % solution.

(10 marks)

- Q4 (a) Show the difference between process flow diagram (PFD) and process & instrumentation diagram (P&ID). (8 marks)
  - (b) Name the following process symbols shows in **Figure Q4** (b) and briefly explain the function of each equipment. (9 marks)
  - (c) Compare the primary difference between a pump and a compressor. (3 marks)
- Q5 (a) Describe:
  - (i) Dalton's Law

(4 marks)

(ii) Raoult's Law

(4 marks)

(b) Determine the mass in grams of glucose (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>) required to dissolve in 300 g of water at temperature of 40 °C to create a solution with a vapor pressure of 54 torr. (The vapor pressure of water at 40 °C is 55.3 torr) (C= 12.01g/mol, H=1.008g/mol, O=16 g/mol)

(12 marks)

### FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2018/2019

**COURSE NAME** 

: FUND. OF PLANT TECHNOLOGY

PROGRAMME CODE: BNL

COURSE CODE

: BNL 20103

### Table Q1 (b)

## Table of Bond Enthalpies (kJ/mole) at 25 °C

| Bond | Enthalpy | Bond  | Enthalpy | Bond  | Enthalpy |  |
|------|----------|-------|----------|-------|----------|--|
| Н-Н  | 435      | C-N   | 301      | P≡P   | 490      |  |
| H-F  | 569      | C-O   | 352      | Br-Br | 193      |  |
| H-Cl | 431      | C=O   | 532      | Cl-Cl | 243      |  |
| H-Br | 364      | C-Br  | 234      | H-Se  | 276      |  |
| H-I  | 297      | C-Cl  | 331      | Н-Те  | 243      |  |
| H-C  | 414      | C-F   | 440      | S=S   | 427      |  |
| H-N  | 460      | N≡N   | 950      | C-S   | 260      |  |
| H-O  | 465      | N-N   | 297      | H-Si  | 393      |  |
| H-S  | 377      | O=O   | 498      | H-P   | 318      |  |
| C-C  | 368      | 0-0   | 213      | C-Si  | 289      |  |
| C=C  | 724      | F-F   | 159      | I-I   | 151      |  |
| C≡C  | 963      | Si-Si | 339      |       |          |  |

Table Q2 (b) The properties of mixture gases

| Compound        | MW (g/mol) | Compositions (%) |  |  |  |
|-----------------|------------|------------------|--|--|--|
| $CO_2$          | 44.01      | 14.1             |  |  |  |
| CO              | 28.01      | 7.9              |  |  |  |
| $\mathrm{CH_4}$ | 16.04      | 19.4             |  |  |  |
| $N_2$           | 28.01      | 30.8             |  |  |  |
| $H_2$           | 2.02       | 10.7             |  |  |  |
| $H_2O$          | 18         | 12.8             |  |  |  |
| $\mathrm{SO}_2$ | 64.06      | 4.3              |  |  |  |

## FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2018/2019

**COURSE NAME** 

: FUND. OF PLANT TECHNOLOGY

PROGRAMME CODE: BNL

COURSE CODE

: BNL 20103

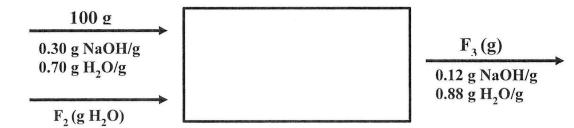
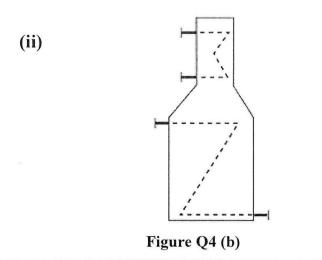




Figure Q3 (b)







**TERBUKA**