

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2018/2019**

COURSE NAME : ENVIRONMENTAL RISK

ASSESSMENT

COURSE CODE : BNA 30903

PROGRAMME CODE : BNA

EXAMINATION DATE: JUNE/JULY 2019

DURATION : 2 HOURS 30 MINUTES

INSTRUCTIONS : ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

Q1 (a) List **THREE** (3) risk assessment process model.

(3 marks)

- (b) Identify **THREE** (3) methods that can be used in hazard identification process. (6 marks)
- (c) Discuss the risk assessment process involved of air pollution occurred at Sungai Kim-Kim, Pasir Gudang Johor.

(10 marks)

(d) Demonstrate the HAZOP process as one of the methods used in hazard identification process.

(6 marks)

Q2 (a) Define the acute, sub-chronic and chronic exposures.

(6 marks)

- (b) Describe the following terms:
 - (i) Exposure routes.
 - (ii) Receptors.
 - (iii) Exposure assessment.

(9 marks)

- (c) Raja drinks water from a contaminated well for 30 years. The resulting dose rate changes because the concentration of the contaminant in the well decreases with time. If the dose rate is given by
 - $\dot{D}(t) = 0.05 \exp(-t/7000 d), \text{mg(c)/kg.d.}$ where t has unit of days, calculate the following:
 - (i) The total dose.
 - (ii) The dose rate averaged over the exposure period (i.e. average daily dose).

Q3

(a)

(b)

(c)

ENT	TIAL BNA 30903
(iii)	The dose averaged over an averaging time of 70 years (i.e. lifetime average daily dose).
	(10 marks)
Ana	lyze the difference between Quantal and Graded dose-response curves.
	(6 marks)
A 50	years old man with a heart problem is to be treated with a diuretic drug
Drugs X and Y have the same mechanism of diuretic action. Drug X in a dose	
of 10mg produces the same magnitude of diuresis as 1000mg of drug Y.	
(i)	State which drug is less efficacious.
(ii)	State which drug is more potent.
(iii)	State which drug has a lower toxicity.
(iv)	State which drug is safer.
(v)	State which drug will have a longer duration of action.
	(10 marks)
Brie	fly describe the term Therapeutic Index (TI).
	(3 marks)
Define the following terms:	
(i)	LD_{50}

- (d)
 - (ii) ED_{50}
 - (iii) TD_{50}

(6 marks)

Q4 (a) Define the meaning of Risk Characterization on dose response.

(3 marks)

Based on experiments with mice, a human threshold dose for chronic ingestion (b) exposure to an organic solvent is estimated to be 42mg/(kg.d). An assessment of exposure to contaminated groundwater indicates that a reasonable maximum

CONFIDENTIAL

BNA 30903

exposure level to the solvent in contaminated groundwater was 0.894mg/(kg.d). Calculate the daily margin of safety at this level of exposure.

(4 marks)

- (c) A population is exposed to polychlorinated biphenyls at a dose of 7 x 10⁻⁵ mg/(kg.d) and dieldrin at a dose of 4 x 10⁻⁶ mg/(kg/d). Assume that the cancer slope factor for the PCB is 4.34(mg/(kg.d))⁻¹ and dieldrin is 30 (mg/kg.d))⁻¹.
 - (i) Calculate the combined risk of these two contaminants (Assumption: cancer risk from this two mixture is additive).

(4 marks)

(ii) If 10,000 people are exposed at this level, calculate the upper bound on the number of contaminant-induced cancers.

(2 marks)

(d) Identify the exposure duration as stated by the Environmental Protection Agency in 2002.

(6 marks)

(e) Demonstrate **THREE** (3) factors affecting risk.

(6 marks)

- END OF QUESTIONS-

FINAL EXAMINATION

SEMESTER/SESSION : SEM II/2018/2019 PROGRAMME CODE : BNA

COURSE

: ENVIRONMENTAL RISK COURSE CODE : BNA 30903

ASSESSMENT

LIST OF FORMULAS

$$D_T = \int_0^{t_\theta} \dot{D}(t) dt$$

$$\widetilde{D} = \frac{\int_0^{t_g} \dot{D}(t) dt}{t_{avg}} = \frac{D_t}{t_{avg}}$$

$$\int e^{-x} dx = -e^{-x}$$

$$\int e^{-x} dx = -e^{-x}$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}$$

$$R \approx \rho D$$

$$R \approx \rho E$$

$$I = RP$$

$$I = \rho DP$$

$$I = \rho EP$$