

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2018/2019

COURSE NAME

OPERATING SYSTEM

COURSE CODE

BNF 32303

PROGRAMME CODE

BNF

:

EXAMINATION DATE :

DECEMBER 2018 / JANUARY 2019

DURATION

2 HOURS 30 MINUTES

INSTRUCTION

i) ANSWER ALL QUESTIONS IN

SECTION A

ii) ANSWER ONE (1) QUESTION IN

SECTION B

TERBUKA

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

SECTION A

Q1 (a) Discuss all FOUR (4) of the basic computer system components (8 marks)

- (b) A boot sequence is the set of operations a computer system performs at startup.
 - (i) The computer system run an initial program during the boot sequence. State the name of the initial program.
 - (ii) Explain the actions in typical boot sequence.

(4 marks)

- (c) Operating System user interface provides simplified access to a computer system.
 - (i) List TWO (2) types of user interface.
 - (ii) Provide THREE (3) main differences between the two types of user interface listed in Q1(c)(i) above.

(8 marks)

(d) A user program intend to open a file using a system-call 'open()'. Draw a diagram to demonstrate the implementation of this system-call. Include 'user mode', 'kernel mode' and 'system-call interface' in your diagram.

(5 marks)

Q2 (a) State the difference between a 'program' and a 'process'

(2 marks)

- (b) In process creation, a parent process creates child processes and in turn create their own child processes.
 - (i) For UNIX system, name the system-call used to 'create' and 'terminate' a process.
 - (ii) Draw a diagram of a parent process that creates **TWO** (2) child processes and each of the child processes creates a child process of its own. Label a suitable process identifier (PID) for every process.

(8 marks)

CONFIDENTIAL

BNF 32303

- (c) Inter-process comunication (IPC) allows cooperation among processes.
 - (i) Identify THREE (3) reasons why processes need to cooperate.
 - (ii) Shared Memory and Message Passing are two models of IPC. Explain **ONE(1)** benefit for each of the models.

(7 marks)

- (d) Thread is the fundamental unit of CPU utilization.
 - (i) Identify THREE (3) key differences between Process and Thread.
 - (ii) Define multithreading and explain how multithreading is better than single processing.

(8 marks)

- Q3 (a) Deadlock can occur when a set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set.
 - (i) List TWO (2) examples of deadlock that are analogous to computer-system environment.
 - (ii) Provide FOUR (4) necessary conditions for deadlock to occur.

(8 marks)

- (b) Draw the resource allocation graph based on resource usage in **Table Q3(b)**. (7 marks)
- (c) Given the system model:

Processes, $P = \{P_1, P_2\}$ Resources, $R = \{R_1, R_2\}$ Resource instances, $W_1 = 2, W_2 = 2$ Edges, $E = \{P_1 \rightarrow R_2, P_2 \rightarrow R_1, R_1 \rightarrow P_1, R_1 \rightarrow P_2, R_2 \rightarrow P_2\}$

- (i) Draw the corresponding resource allocation graph based on the system model.
- (ii) Determine whether the resource allocation graph in (i) is in deadlock or not.
- (iii) Determine the condition if P₂ request for R₂ is granted.

(10 marks)

SECTION B

- Q4 (a) Scheduling algorithms in CPU scheduling deals with the problem of deciding which of the processes in the ready queue to be allocated the CPU. Explain briefly:
 - (i) FCFS scheduling
 - (ii) SJF scheduling
 - (iii) RR scheduling
 - (iv) Waiting time
 - (v) Time quantum

(5 marks)

- (b) Table Q4(b) shows the set of processes with the length of the CPU-burst time given in milliseconds. The processes are assumed to have arrived in the order P1, P2, P3, P4, and P5 all at time 0.
 - (i) Draw **FOUR** (4) Gantt charts illustrating the execution of these processes using FCFS, SJF, Priority (where smaller priority number implies a higher priority), and RR (given, time quantum is 5ms) scheduling.
 - (ii) Evaluate the waiting time of each process for FCFS and SJF scheduling algorithms in (i) respectively.
 - (iii) Between FCFS and SJF, which of the scheduling algorithm in part (ii) has the lower average waiting time (over all processes)?

(20 marks)

- Q5 (a) Describe TWO (2) differences between Logical Address and Physical Address. (4 marks)
 - (b) Given process P1, P2, P3 and P4 are requesting memory of 10kB, 30kB, 20kB and 10kB respectively. Original memory partition are given in **Table Q5(b)**. Illustrate the new memory partition after inserting the process by using:
 - (i) First fit algorithm
 - (ii) Best fit algorithm

(10 marks)

- (c) Given the Unix Tree Structured Directories in **Figure Q5(c)**. Answer the following questions. Let your initial location be /home/UTHM.
 - (i) State Unix command to display your current location.
 - (ii) State the Unix command to list all directories in long listing format
 - (iii) Code the Unix command to change your location into eBook directory.
 - (iv) Code a single Unix command to delete all text file in Document directory
 - (v) Code a simple Bash Script that can execute the following operation. First enter Exam directory, then create a text file named thereisnocake.txt, and finally displays all the files in the current directory.

(11 marks)

END OF QUESTIONS –

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2018/2019

PROGRAMME : BNF

COURSE

: OPERATING SYSTEM COURSE CODE : BNF32303

Table Q3(b)

Process	Current			Outstanding		Available			
	Allocation		Request			Resouces			
	R1	R2	R3	R1	R2	R3	R1	R2	R3
P1	1	0	0	1	1	0			
P2	2	1	0	0	0	0	0	0	1
Р3	1	2	1	0	0	1			
P4	0	1	0	0	1	0			

Table Q4(b): Process queue

Process	Burst Time (ms)	Priority	
P1	10	3	
P2	1	1	
Р3	2	3	
P4	1	4	
P5	5	2	

Table Q5(b)

30	kB
15	kB
50	kB
20	kВ

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2018/2019

PROGRAMME : BNF

COURSE

: OPERATING SYSTEM COURSE CODE : BNF32303

Figure Q5(c)

