

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER II SESSION 2018/2019**

COURSE NAME

ELECTRONIC DEVICES AND

CIRCUITS II / ELECTRONIC **DEVICES AND CIRCUITS**

COURSE CODE

: BNR 25903 / BNR 22303

PROGRAMME CODE :

BNE

EXAMINATION DATE : JUNE / JULY 2019

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

Q1	(a)	Explain the significance of zero output impedance and infinite input impedance of an ideal op-amp.			
		an ide	аг ор-атр.	(2 marks)	
	(b)	Refer to amplifier circuit in Figure Q1(b).			
		(i)	Calculate all voltage drops with polarity markings.	(2 marks)	
		(ii)	Calculate all currents and show the current direction.	(2 marks)	
		(iii)	Calculate the overall voltage gain, A_V as a ratio and as in decibel	unit. (2 marks)	
	(c)	(i)	For the circuit in Figure Q1(c)(i), calculate the feedback current,	I _L . (2 marks)	
		(ii)	For the circuit in Figure Q1(c)(ii) , calculate the output voltage, <i>V</i>	o. (2 marks)	
	(d)	Analyze the circuit in Figure Q1(d) and sketch the output voltage versus time graph for the given input voltage.			
		grapii	for the given input voltage.	(8 marks)	
Q2	(a)	Explain with the diagram crossover distortion situation that usually occur in class B amplifier. Suggest a component to be added in order to reduce the crossover distortion.		crossover	
				(5 marks)	
	(b)	Sketch the collector current waveform when amplifier operating as class A, class B, class C and class AB.			
				(4 marks)	
	(c)	The input voltage of the power amplifier for the Figure Q2(c) is 8 V_{rms} . Calculate:			
		(i)	Power input, P_i (dc).	(2 marks)	
		(ii)	Power output, P_o (ac).	(2 marks)	
		(iii)	Efficiency, $\% \eta$.	(2 marks)	
		(iv)	Power dissipated by both power output transistors.	(2 marks)	

(d) A 2N3055 power transistor dissipates 20 W during operation. The amplifier circuit is designed to operate over an ambient temperature range of 0°C to 80°C. The worse case condition exists when the ambient temperature is 80°C. The temperature case to heat sink thermal resistance is 0.5°C/W and the heat sink is rated for a thermal resistance of 3°C/W. Calculate the case temperature of the transistor for worst case operating conditions.

(3 marks)

Q3 (a) Analyze the operation of the circuit in Figure Q3(a).

(4 marks)

(b) Digital-to-analog conversion can be achieved using a number of different methods. One popular scheme uses a network of resistors called a ladder network. Sketch a ladder network using 01101 input and 15 k Ω resistors.

(5 marks)

(c) Draw the circuit of a one-shot using a 555 timer to provide one time period of 20 μ s. If $R_A = 7.5 \text{ k}\Omega$, determine the value of capacitor, C.

(5 marks)

- (d) Figure Q3(d) shows the phase-locked loop (PLL) connected to work as a FM demodulator.
 - (i) Calculate the center frequency of the circuit.

(1 marks)

(ii) Find the value of capacitor, C_I in the circuit to obtain a center frequency of 100 kHz.

(2 marks)

(iii) Find the lock range for $R_I = 4.7 \text{ k}\Omega$ and $C_I = 0.001 \mu\text{F}$.

(3 marks)

Q4 (a) Describe the principles of oscillator operation in electronic systems by using a diagram.

(4 marks)

(b) State TWO (2) types of sine wave oscillator. Define TWO (2) examples for each of oscillator.

(4 marks)

- (c) For the circuit shown in Figure Q4(c),
 - (i) Find $t_{\rm H}$ and $t_{\rm L}$ for the output, $V_{\rm O}$.

(3 marks)

(ii) Determine the duty cycle.

(1 marks)

CONFIDENTIAL

BNR 25903 / BNR 22303

(iii) Clearly draw and label the waveforms of $V_{\rm C}$ and $V_{\rm O}$.

(3 marks)

(d) Design a phase-shift oscillator for a frequency of 800 Hz. The capacitors value is 10 nF.

(5 marks)

Q5 (a) With the aid of diagram, show the relation between V_0 , V_{in} , V_{ut} and V_{lt} of Scmitth trigger transfer characteristic.

(4 marks)

(b) **Figure Q5(b)** shows the circuit of a Schmitt Trigger and its transfer characteristic respectively. Based on these figures, determine V_{REF} and R_2 .

(5 marks)

(c) Transfer function for two types of active filter are:

$$H(s) = \frac{28.3 \times 10^8}{2s^2 + (5.684 \times 10^4)s + (8.08 \times 10^8)}$$

$$H(s) = \frac{6.25s^2}{2.5s^2 + (2.222 \times 10^4)s + (9.875 \times 10^7)}$$

(i) List type of filter for each transfer function.

(2 marks)

(ii) Find the cut-off frequency for each filter.

(3 marks)

(d) Design a second order low pass Butterworth filter with cut-off frequency of 1 kHz. Select $C = 0.0047 \,\mu\text{F}$. Then, draw the frequency response of the circuit.

(6 marks)

- END OF QUESTIONS -

SEMESTER / SESSION COURSE NAME

: SEM II / 2018/2019 : ELECTRONIC DEVICES AND CIRCUITS II / ELECTRONIC DEVICES AND CIRCUITS

PROGRAMME CODE : BNE COURSE CODE : BNR 25903 / BNR 22303

Figure Q1(b)

SEMESTER / SESSION COURSE NAME

: SEM II / 2018/2019 : ELECTRONIC DEVICES AND CIRCUITS II / ELECTRONIC DEVICES AND CIRCUITS

PROGRAMME CODE COURSE CODE

: BNE : BNR 25903 / BNR 22303

Figure Q1(c)(ii)

ψ'n (ms)

Figure Q1(d)

SEMESTER / SESSION COURSE NAME

: SEM II / 2018/2019 : ELECTRONIC DEVICES AND CIRCUITS II / ELECTRONIC DEVICES AND CIRCUITS

PROGRAMME CODE : BNE COURSE CODE : BNR 25903 / BNR 22303

Figure Q2(c)

SEMESTER / SESSION

: SEM II / 2018/2019

COURSE NAME

: ELECTRONIC DEVICES AND

CIRCUITS II / ELECTRONIC DEVICES

AND CIRCUITS

PROGRAMME CODE : BNE

COURSE CODE

: BNR 25903 /

BNR 22303

Figure Q3(d)

SEMESTER / SESSION COURSE NAME

: SEM II / 2018/2019 : ELECTRONIC DEVICES AND CIRCUITS II / ELECTRONIC DEVICES AND CIRCUITS

PROGRAMME CODE : BNE COURSE CODE : BNR 25903 / BNR 22303

Figure Q4(c)

