

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER II SESSION 2017/2018

COURSE NAME

ELECTRICAL POWER AND

MACHINES

COURSE CODE

BNJ 20502

PROGRAMME CODE :

BNM/BNL/BNG

EXAMINATION DATE :

JUNE/JULY 2018

DURATION

: 2 HOURS

INSTRUCTION

: ANSWER ALL QUESTIONS

TERBUKA

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

BNJ 20502

Q1	(a)	Calculate the resistance between points A and B (R _{AB}) for the resistor network shown in Figure Q1(a).			
			(4 marks)		
	(b)	Three identical capacitors are connected in delta to a 415 V, 50 Hz, 3-pl If the line current is 15 A, determine the capacitance of each of the capaci	nase supply. tors. (6 marks)		
	(c)	Based on electrical power system, illustrate complete diagram of typic level in a power system from power generator until end user (domestic cur	ical voltage stomer). (10 marks)		
Q2	(a)	Based on Figure Q2(a), determine the apparent power of this load.	(2 marks)		
	(b)	Determine the power factor of the load.			
			(2 marks)		
	(c)	Determine the reactive power of the load.			
			(2 marks)		
	(d)	A capacitor of 80 microFarads is used to improve the power factor. Denew reactive power.	termine the		
			(8 marks)		
	(e)	Determine the new power factor.			
			(4 marks)		
	(f)	List TWO (2) advantages of power factor correction.			
			(2 marks)		
02					
Q3	(a)	State Faraday's Law.	(2 marka)		
	(1.)		(2 marks)		
	(b)	(b) A ferromagnetic core is shown in Figure Q3(b) . The depth of the core (into the is 5 cm, and the other dimensions are as shown in Figure Q3(b) . The 500 turns coil wrapped around the left side of the core. Assume that the permeability of the core is 1000.			
		(i) Determine the value of current that will produce a flux of 0.003 Wh	o. (10 marks)		
		(ii) Determine the flux density at the right side of the core.	(2 marks)		

Q4

Q5

	(iii)	Demonstrate the flow of the magnetic flux induced in the ferron in a magnetic circuit analogy.	nagnetic core			
		in a magnetic orient analogy.	(2 marks)			
(c)	A step-down transformer is rated at 75 kVA, 7200 V/240 V. Calculat current on each side of the transformer. Determine the exciting current if of the rated current.		ate the rated if it is 1.7 %			
			(4 marks)			
(a)	Differentiate any THREE (3) types of DC motors by sketching their equivaler circuit diagrams.					
			(6 marks)			
(b)	of 1.	A series DC motor has an armature resistance of 0.6 Ω and field winding resistance of 1.5 Ω . In driving a certain load at 1200 rpm, the current drawn by the motor is 20 A from a voltage source of 220 V. The rotational loss is 150 W. Calculate:				
	(i)	the back-emf,				
			(2 marks)			
	(ii)	the mechanical power developed by the motor, and	(2 marks)			
	(iii)	the efficiency of the motor.	(6 1)			
(c)	Discu	uss the significance of back-emf produced in a motor.	(6 marks) (4 marks)			
			(+ marks)			
(a)	Name	e the main components of an induction motor.	(2 marks)			
(b)	Expla Figu i	Explain the operating principles of an induction motor based on the diagram in Figure Q5(b) .				
			(4 marks)			
(c)	A 20 Calcu	A 208V, 10 HP, four-pole, 60 Hz induction motor has a full-load slip of 5%. Calculate:				
	(i)	the synchronous speed of the motor,	(2 marka)			
	(;;)	4ho matau 1 - (-1 1 1 1 1	(2 marks)			
	(ii)	the rotor speed at the rated load, and	(2 marks)			
	(iii)	the rotor frequency of the motor.				
			(2 marks)			

CONFIDENTIAL

BNJ 20502

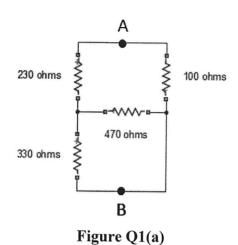
- (d) An induction motor rotates at 1120 rpm has a power flow as shown in **Figure Q5(d)**. The vertical arrow indicates the losses at several stages in the motor. Given the slip is 5 %.
 - (i) Analyze the diagram, hence, determine the efficiency of the motor.

(4 marks)

(ii) Calculate the torque at the given speed.

(4 marks)

-END OF QUESTIONS -


FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2017/2018

PROGRAMME CODE: BNM/BNL/BNG

COURSE NAME

: ELECTRICAL POWER AND MACHINES COURSE CODE : BNJ 20502

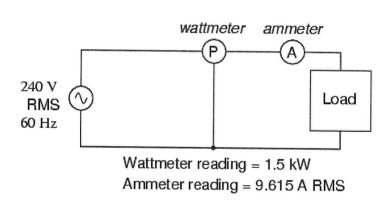
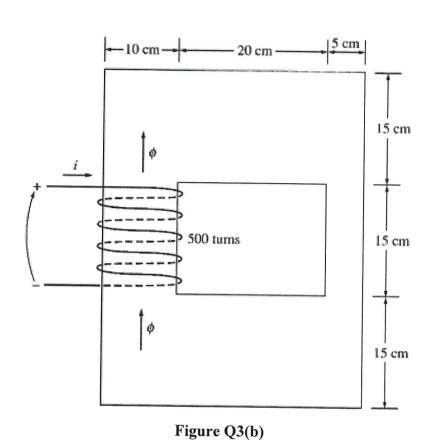
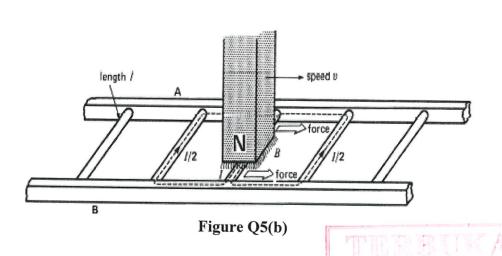


Figure Q2(a)


FINAL EXAMINATION


SEMESTER / SESSION : SEM II / 2017/2018

PROGRAMME CODE: BNM/BNL/BNG

COURSE NAME

: ELECTRICAL POWER AND MACHINES COURSE CODE : BNJ 20502

FINAL EXAMINATION

SEMESTER / SESSION : SEM II / 2017/2018 COURSE NAME

: ELECTRICAL POWER AND MACHINES COURSE CODE : BNJ 20502

PROGRAMME CODE: BNM/BNL/BNG

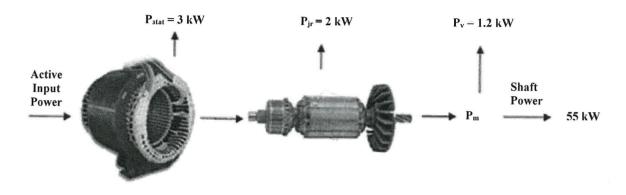


Figure Q5(d)

TERBUKA