

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2016/2017

COURSE NAME

SOIL MECHANICS AND

FOUNDATIONS

COURSE CODE

: BNP 20903

PROGRAMME

: 2 BNA/BNB/BNC

DATE

: DECEMBER 2016 / JANUARY 2017

DURATION

: 3 HOURS

INSTRUCTIONS

: ANSWER FOUR (4) QUESTIONS

ONLY.

TERBUKA

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

CONFIDENTIAL

CONFIDENTIAL

BNP 20903

- Q1 (a) Give brief explanations on TWO (2) field exploration methods commonly used for site characterisation.

 (8 marks)

 (b) Identify FIVE (5) operational requirements of drilling on site.

 (5 marks)
 - (c) Propose the steps you would take for a subsurface construction project. (7 marks)
 - (d) Briefly discuss the potential problems caused by poor management of groundwater above the excavation level, and propose a solution to the problems.

 (5 marks)
- Q2 (a) Briefly examine **THREE** (3) factors affecting lateral earth pressure. (6 marks)
 - (b) With the aid of suitable sketches, compare the following stress distribution analytical methods below:
 - (i) Using Fadum's chart.

(3 marks)

(ii) The 1:2 method.

(3 marks)

(c) Discuss in brief why there is no need for any support when making a vertical cut to the depth of $z = 2c/\gamma$ in a soil of c = c and $\phi = 0$. Include the lateral earth pressure distribution diagram in the answer.

(8 marks)

(d) A 5.5 m high vertical wall retains sand behind it. The sand ($\gamma = 18 \text{ kN/m}^3$) has a horizontal level and no water table is found on site. Using Rankine's Theory, determine the total lateral force P_A on the wall. Take $K_A = 0.323$. (5 marks)

Q3 (a) Sketch and briefly explain the FOUR (4) mechanisms of soil resisting stresses from a shallow foundation.

(8 marks)

- (b) Examine **THREE** (3) factors influencing the choice of deep foundation. (6 marks)
- (c) Earth dams are constructed across rivers to hold back and store water in reservoirs. Propose **TWO** (2) earth dam designs using labelled sketches.

 (4 marks)
- (d) Calculate the Qult of a precast pile with the following data.
 - Pile dimensions: 350 mm x 350 mm x 24 m long
 - Silty clay soil: $c_u = 30 \text{ kPa}$ (0-6 m) $c_u = 32 \text{ kPa}$ (6-12 m) $c_u = 72 \text{ kPa}$ (12-18 m) $c_u = 75 \text{ kPa}$ (18-24 m) $c_u = 190 \text{ kPa}$ (at pile tip)
 - Also given:

$$Q_p = N_c c_u A_p$$
 and $Q_s = \sum fp\Delta L = \sum \alpha c_u p\Delta L$

Where,
$$N_c = 9$$

 $\alpha = 0.95 (0-12 \text{ m})$
 $\alpha = 0.62 (12-24 \text{ m})$

(7 marks)

CONFIDENTIAL

BNP 20903

- Q4 (a) Outline THREE (3) common causes and consequences each of geotechnical failures. (6 marks)
 - (b) Examine **THREE** (3) main disadvantages of the vibro-floatation method. (6 marks)
 - (c) There is a wide selection of surface compaction methods available in the market. Identify and explain FOUR (4) main considerations for choosing the suitable method.

 (8 marks)
 - (d) Briefly propose how effective reinforcement can be achieved from the interaction between geosynthetic materials and soils.

 (5 marks)
- Q5 (a) Illustrate how subsurface contamination takes place and affects the groundwater quality. (5 marks)
 - (b) With a detailed sketch, show the possible contamination pathways of a waste dump.

 (10 marks)
 - (c) Suggest **FIVE** (5) waste material reuse efforts for waste reduction purposes. (5 marks)
 - (d) Vertical barriers are commonly used to control the movement of contaminants. Put forward the primary requirements of an ideal containment system.

(5 marks)

- END OF QUESTIONS -