

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2016/2017

COURSE NAME

HYDRAULICS AND

HYDROLOGY

COURSE CODE

: BNP 20103

PROGRAMME

: BNA/BNB/BNC

EXAMINATION DATE

: DECEMBER 2016/JANUARY 2017

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS.

TWO (2) FROM PART A AND

TWO (2) FROM PART B. ONE (1)

FROM ANY PARTS

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

um incubs mmüste hakmay ist on bangde Ponsyrusin bang Pangus — kang Majangar pon Akalan Pangus sekalang incurance Pangus bang ng musancen Pangus bang tang ng Carp Malangsa

PART A: HYDROLOGY

Q1 (a) Explain the hydrologic cycle with the aid of labeled sketch.

(3 marks)

- (b) A pond is 100 ha-cm with outflow of 3 m³/s and inflow of 10 m³/s. After 2 hours later, the outflow increases to 10 m³/s when while the inflow reduces to 5 m³/s with precipitation of 15 mm. By neglecting the evaporation and infiltration, calculate
 - (i) Volume of the pond
 - (ii) Storage change (in m³) in the pond after 2 hours

(Given 1 ha = $10,000 \text{ m}^2$)

(10 marks)

(c) Estimate the missing precipitation depth (cm) using the quadrant method for the data tabulated in Table Q1(c).

Table Q1(c): Precipitation Data

Quadrant	Gauge	Precipitation Depth	Coordinates (x,y)
		(cm)	
I	A	12.2	6,15
	В	11.4	14,8
II	C	9.9	7,-8
	D	10.2	14,-8
IV	Е	14.2	-9,10
	F	10.7	-18,7
	G	9.9	-15,19

(7 marks)

- Q2 (a) Define
 - (i) Evapotranspiration potential
 - (ii) Evapotranspiration actual
 - (iii) Catchment area

(6 marks)

(b) An isolated storm produced surface runoff volume of 17500 m³ over 50 hectares catchment area. The cumulative rainfall over the catchment is shown in **Table Q2(b)**. Sketch the hyetograph and calculate the Φ index for the storm in cm/hr.

Table Q3

Time	Cumulative rainfall
(minute)	(cm)
0	0
30	0.5
60	1.65
90	3.55
120	3.55
150	4.70
180	6.80
210	7.95
240	8.45

(14 marks)

Q3 (a) Explain TWO (2) factors affecting surface runoff.

(5 marks)

(b) Diagram TWO (2) techniques of baseflow separation.

(5 marks)

(c) (i) Correlate **TWO** (2) factors affecting the hydrograph shape.

(4 marks)

(ii) **Table Q3 (c)** below are the streamflows from a catchment area of 20 km^2 due to a storm of 1 hour duration. Find the Unit Hidrograph ordinates from an effective rain of 6 cm (UH_{6cm}) of 1 hour duration. Assume that a constant base flow of 15 m³/s.

Table Q3 (c)

Time (hour)	0	1	2	3	4	5	6	7	8	9	10
Stream flow, Q (m ³ /s)	15	25	50	55	48	35	30	27	24	20	15

(6 marks)

TERBUKA

PART B: HYDRAULICS

Q4 (a) State the definition of uniform and steady flow

(2 marks)

(b) A 3 m width rectangular channel with side slope 6(H): 4(V) carries a discharge of 25000 L/s on longitudinal slope of 0.002 and roughness n = 0.036. Determine normal depth of flow using graph method. (Please attach your graph in answer sheet)

(10 marks)

(c) The concrete drain is to be built to convey 6 m 3 /s of flow over a slope of 0.0005. If Manning's n is given as 0.015, analyze dimension of rectangular and triangular section for best hydraulic section. Justify the best shape of drain to minimize construction cost, and give a reason.

(8 marks)

Q5 (a) Energy conservation is an important concept when analyzing open channel flows. For given values of unit discharge, q, a specific energy diagram depicting energy and the depth of water, y, can be developed. With the aid of sketch, explain clearly this diagram.

(5 marks)

- (b) A 2 m width of rectangular channel is conveying flow at 180 m 3 /min. Manning n and slope of cannel is given as 0.03 and 0.00937, respectively. At the middle of channel, the width is reduced to 1.85 m.
 - (i) Calculate critical and normal depth of flow.
 - (ii) Analyze depth of flow before and after the constriction width.
 - (iii) Sketch the flow surface profile.

(15 marks)

CONFIDENTIAL

er Lahamilton

Q6 (a) Name THREE (3) classification of turbine and give ONE (1) example of each classification.

(6 marks)

(b) 10000 L/s of water is supplied to a turbine to operate under a head of 28 m at 185 rpm. If efficiency of turbine is 90%, determine the revolution per-minute (rpm), discharge and brake power of the turbine to operate under 20 m head.

(8 marks)

(c) Relate the head H, efficiency η , inflow power P_i , and the best efficiency point (BEP) of a centrifugal pump.

(6 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER / SESSION : SEM I/ 2016/2017

COURSE NAME

: HYDRAULICS AND

HYDROLOGY

PROGRAMME: BNA/BNB/BNC

COURSE CODE: BNP 20103

Table 1. Open channel flow section geometries

Section Section	Area A	Top width T	Wetted perimeter P
$ \begin{array}{c c} & \longrightarrow \\ & \longrightarrow \\ \hline & \longrightarrow \\ \hline & \longrightarrow \\ \hline & Rectangular $	Ву	В	B+2y
$ \leftarrow T \rightarrow $ $1 \qquad \qquad \downarrow y$ $Triangular$	zy^2	2zy	$2y\sqrt{1+z^2}$
$1 \underbrace{\begin{array}{c} T \longrightarrow \\ Z \longrightarrow B \longrightarrow \end{array}}_{Z} y$ Trapezoidal	$By + zy^2$	B + 2zy	$B + 2y\sqrt{1 + z^2}$
$D = \begin{bmatrix} & & & \\ & & & $	$\frac{D^2}{8}(\theta-\sin\theta)$	$D\left(\frac{\sin\theta}{2}\right)$	$\frac{\theta D}{2}$

FINAL EXAMINATION

SEMESTER / SESSION : SEM I/ 2016/2017 COURSE NAME

: HYDRAULICS AND

HYDROLOGY

PROGRAMME: BNA/BNB/BNC

COURSE CODE: BNP 20103

Table 2 Rest hydraulic sections

Table 2. Best hydraunc sections							
Cross section	Area A			Hydraulic depth D			
Trapezoid	$\sqrt{3}y^2$	$2\sqrt{3}y$	$\frac{y}{2}$	$\frac{4\sqrt{3}}{3}y$	$\frac{3}{4}y$		
Rectangle	$2y^2$	4 <i>y</i>	$\frac{y}{2}$	2 <i>y</i>	у		
Triangle	y^2	$2\sqrt{2}y$	$\frac{\sqrt{2}}{4}y$	2 <i>y</i>	$\frac{y}{2}$		
Semicircle	$\frac{\pi}{2}y^2$	πу	$\frac{y}{2}$	2 <i>y</i>	$\frac{\pi}{4}y$		
Parabola	$\frac{4\sqrt{2}}{3}y^2$	$\frac{8\sqrt{2}}{3}y$	$\frac{y}{2}$	$2\sqrt{2}y$	$\frac{2}{3}y$		

Some useful equations:

$$Q = A \frac{1}{n} R^{\frac{2}{3}} S_0^{\frac{1}{2}}$$

$$Q = ACR^{\frac{1}{2}}S_o^{\frac{1}{2}}$$

$$P = \gamma QH$$

$$Fr = \frac{V}{\sqrt{gD}}$$

$$q_{\text{max}} = \sqrt{g y_c^3}$$

$$q_{\max} = \frac{Q}{B_{\max}}$$

$$\frac{P}{D^5 N^3}$$

$$\frac{ND}{\sqrt{H}}$$

$$\frac{Q}{ND^3}$$

$$E = y + \frac{V^2}{2g}$$

$$E_{\min} = \frac{3}{2} y_c$$

$$y_c = \sqrt[3]{\frac{q^2}{g}}$$