

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2016/2017

COURSE NAME

GROUNDWATER TECHNOLOGY

COURSE CODE

BNA40803

PROGRAMME CODE

BNA

EXAMINATION DATE

DECEMBER 2016 / JANUARY 2017

DURATION

3 HOURS

INSTRUCTION

SECTION A: ANSWER **ALL**

OUESTIONS

SECTION B: ANSWER **FOUR (4)**

QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF SEVEN (7) PAGES

CONFIDENTIAL

CONFIDENTIAL

SECTION A

Q1 (a) Describe own your words according to statement "Surface water and groundwater systems are connected in most landscapes".

(5 marks)

(b) Find out **THREE** (3) characteristics of groundwater and surface water interacts according to surface water bodies, water movement and quantity effects.

(6 marks)

(c) Determine the factors of groundwater interacts for two wells system was built on sandy clay layer (40m deep) using indirect recharge method at as shown in **Table Q1(c).**

(9 marks)

TERBUKA

CONFIDENTIAL

165,468 MUS 11

CONFIDENTIAL

SECTION B

Q2 (a) Define the terms as follows:

- (i) Groundwater hydrology
- (ii) Aquifer

(3 marks)

(b) Explain in your own words the principles of groundwater flow based on force potential and hydraulic head.

(4 marks)

- (c) Give an example of each main factor as follows the ability the ground condition to hold water:
 - (i) porosity
 - (ii) permeability

(6 marks)

(d) Differentiate **FOUR** (4) aquifer characteristics according to confined and unconfined aquifer.

(7 marks)

- Q3 (a) Define the terms as follows:
 - (i) Horizontal hydraulic gradient
 - (ii) Pressure head

(4 marks)

(b) Formulate **TWO (2)** ways of hydraulic head can be measured.

(4 marks)

(c) By referring to **Figure Q3(c)**, formulate the equivalent permeability for flow perpendicular to the horizontal layers.

(5 marks)

(d) A field sample of an unconfined aquifer is packed in a test cylinder. The length and the diameter of the cylinder are 50 cm and 6 cm, respectively. The field sample is tested for a period of 3 min under a constant head difference of 16.3 cm. As a result, 45.2 cm³ of water is collected at the outlet. Determine the hydraulic conductivity of the aquifer sample and identify the type of soil classification as shown in **Table Q3(d)**.

(7 marks)

CONFIDENTIAL

GR SAU CHAR BINEFINSA Pensyo on carting and indepense i I mater on keider 6 1 indepense i Haversh Tur en 2 en dan Aram Sei har Q4 (a) Give a simple method to find water underground.

(2 marks)

- (b) Show with aided sketch the head of:
 - (i) Well A from mean sea level
 - (ii) Elevation of bottom well (point A)

(4 marks)

(c) Briefly explain the reason why the pH value measurement must be monitored for groundwater quality.

(6 marks)

- (d) Explain the relationship between water levels in wells and groundwater quality and quantity for situation as follows:
 - (i) unconfined (water-table) aquifers
 - (ii) confined aquifers

(8 marks)

Q5 (a) List **THREE** (3) apparatus normally used for pumping test.

(3 marks)

(b) Identify **FOUR (4)** purposes of test pumping water well.

(4 marks)

- (c) A step test was carried out four 2h steps. The **Table Q5(c)** shows data were obtained for yield (Q) and corresponding drawdown (s_w) in the pumping well. Determine:
 - (i) Value of losses
 - (ii) Percent of well efficiency drops

(13 marks)

CONFIDENTIAL

Q6 (a) List SIX (6) applications of artificial recharge.

(3 marks)

(b) Describe the function of recharge estimation according to $R = \delta y \Delta h$.

(4 marks)

(c) Design with aided sketch of the direct subsurface recharge for access deeper aquifers and require less land than the direct surface recharge methods.

(6 marks)

- (d) An unconfined aquifer of clean sand and gravel is located between two fully penetrating rivers with hydraulic conductivity $K = 1 \times 10^{-2}$ cm/s. The aquifer is subject to a uniform recharge of 1.6 m/year. The water surface elevations in rivers A and B are 8.5 m and 10 m, respectively, above the bottom. Estimate:
 - (i) maximum elevation of the water table and the location of groundwater divide,
 - (ii) travel times from groundwater divide to both rivers ($n_e = 0.35$).

(7 marks)

- END OF QUESTIONS -

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2016/2017

PROGRAMME CODE: BNA

COURSE NAME

: GROUNDWATER TECHNOLOGY COURSE CODE : BNA 40803

TABLES

Table Q1(c): Discharge and recharge records

Well	Discharge (m³/d)	Recharge(m ³ /d)	Recharge (%)
W1	40	7.43	19
W2	100	12.1	12

Table Q3(d): Hydraulic conductivity values

Material	K (cm/sec)
Gravel	10 ⁻¹ to 100
Clean sand	10 ⁻⁴ to 1
Silty sand	10^{-5} to 10^{-1}
Silt	10^{-7} to 10^{-3}
Glacial till	10 ⁻¹⁰ to 10 ⁻⁴
Clay	10 ⁻¹⁰ to 10 ⁻⁶

Table O5(c): Pumping test

Step	Q (1/s)	s _w (m)	$Q/s_w (m^2/day)$
Rest	0	0	0
1	14.7	1.43	888
2	31.5	3.46	787
3	44.4	5.41	709
4	57.6	8.90	559

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2016/2017

PROGRAMME CODE: BNA

COURSE NAME

: GROUNDWATER TECHNOLOGY COURSE CODE

: BNA 40803

FIGURE

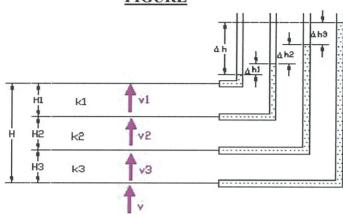


FIGURE Q3(c): Horizontal layer of flows

EQUATIONS

$$A = \frac{\pi D^2}{4}$$

$$Q_s = -K_s \frac{dh}{ds} A$$

$$d = \frac{L}{2} - \frac{K}{W} \frac{\left(h_1^2 - h_2^2\right)}{2L}$$

$$h_{\text{max}}^2 = h_1^2 - \frac{\left(h_1^2 - h_2^2\right)d}{L} + \frac{W}{K} (L - d) d$$

$$V_a = \frac{K}{n_e} \frac{\Delta h}{\Delta x}$$

$$t = \frac{L_A}{V_A}$$

$$K_{eq} = \frac{\Sigma H}{\Sigma \frac{H}{K}}$$

$$V_a = \frac{K}{n_e} \frac{\Delta h}{\Delta x}$$

$$t = \frac{L_A}{V_A}$$

$$K_{eq} = \frac{\Sigma H}{\Sigma \frac{H}{K}}$$

TERBUKA