

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I SESSION 2016/2017

COURSE NAME

ELECTRONIC PRINCIPLES

COURSE CODE

BNR20503

PROGRAMME CODE :

2BND/BNF

EXAMINATION DATE :

DECEMBER 2016 / JANUARY 2017

DURATION

2 HOURS 30 MINUTES

INSTRUCTION

ANSWERS FOUR (4) QUESTIONS

ONLY

TERBUKA

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

CONFIDENTIAL

- Q1 (a) Briefly define the following terms with the aid of diagram for both forward bias and reverse bias connection. :
 - (i) Ideal diode model

(3 marks)

(ii) Practical diode model

(3 marks)

(b) Sketch V_O for the network in **Figure Q1** (b). Determine the dc voltage available. Assume all the diodes are ideal. Show all calculations.

(6 marks)

(c) Draw and completely label the output waveform, V_O for the circuit shown in **Figure Q1(c)**. Assume all the diodes are silicon. Show all your steps in obtaining the waveforms.

(5 marks)

- (d) **Figure Q1 (d)** shows the Zener diode circuit. Given, P_{ZM} (maximum power) = 40 mW. Assume the Zener diode is ideal. Determine:
 - (i) the output voltage, V_o

(2 marks)

(ii) voltage drop across load, V_{RL}

(2 marks)

(iii) zener current, I_z

(2marks)

(iv) power dissipated by the zener diode, P_z

(2 marks)

- Q2 (a) A bipolar junction transistor (BJT) needs to be biased for it to operate.
 - (i) How must the transistor junctions be biased for proper amplifier operation?

(2 marks)

(ii) Describe the three modes of operation of a BJT.

(6 marks)

(b) The emitter-stabilized bias configuration of **Figure Q2** (b) has the following specifications:

 $I_{CO} = \frac{1}{2} I_{C \text{ (sat)}}$, $I_{C \text{ (sat)}} = 3.6 \text{ mA}$, $V_E = 2.65 \text{ V}$, $V_{CC} = 20 \text{ V}$ and $\beta = 50$.

(i) Determine the values for R_C , R_E and R_B .

(8 marks)

(ii) Draw the small-signal equivalent (AC equivalent) circuit for the circuit in Figure Q2 (b).

(3 marks)

(iii) Calculate the values for input impedance (Z_i) , output impedance (Z_0) and voltage gain (A_v) .

(6 marks)

Q3 (a) Draw clearly the transfer characteristics curve of a JFET, D-MOSFET and an E-MOSFET. Describe the differences between them.

(9 marks)

(b) Figure Q3 (b) (i) shows a voltage divider bias FET circuit. Find the required values for R_S and R_D if the FET transfer characteristics curve with the defined Q-point is as shown in Figure Q3 (b) (ii) and the following values are given:

 $V_{DD} = 16 \text{ V}, R_1 = 2.1 \text{ M}\Omega \text{ and } R_2 = 270 \text{ k}\Omega, V_{DS} = 7 \text{ V}.$

(8 marks)

(c) Find the input impedance (Z_i) , output impedance (Z_o) and the output voltage of the amplifier in **Q3** (b) if the input signal $V_i = 2$ mV (peak) and the ac output impedance $r_d = \infty$.

(8 marks)

- Q4 For the network of Figure Q4, given $k = 0.6 \text{ mA/V}^2$, and $V_{GS (th)} = 4 \text{V}$.
 - (a) Determine the I_{DQ} , V_{GSQ} , V_{DS} , V_G , V_D and V_S .

(14 marks)

(b) Draw the AC equivalent circuit. Determine the input impedance, Z_i and the output impedance, Z_o .

(7 marks)

(c) Find the mid-band frequency voltage gain, $A_v = V_o/V_i$.

(4 marks)

Q5 For the network of Figure Q5:

(a) Determine the ac resistance, r_e . Assume $V_{BE} = 0.7$ V.

(5 marks)

(b) Draw the AC equivalent circuit and determine the input impedance, Z_{i} .

(4 marks)

(c) Find the mid-band frequency voltage gain $A_v = V_o/V_i$.

(2 marks)

(d) Find the voltage gain $A_{vs} = V_o/V_s$.

(2 marks)

(e) Determine the low cut-off frequencies, f_{Ls} , f_{LC} and f_{LE} .

(6 marks)

(f) Determine the high cut-off frequencies, f_{Hi} and f_{Ho} .

(6 marks)

Q6 (a) For the Darlington pair circuit in **Figure Q6 (a)**, given $\beta_D = 6000$ and $V_{BE} = 1.6 \text{ V}$.

(i) Calculate the dc bias voltage, V_{E2} and emitter current, I_{E2} .

(6 marks)

(ii) Determine the output voltage.

(4 marks)

- (b) **Figure Q6 (b)** shows a differential amplifier with constant current source. Assuming that all transistors have $V_{BE} = 0.7$ V, determine:
 - (i) The current I.

(4 marks)

(ii) The common mode gain

(4 marks)

(iii) The differential gain

(4 marks)

(iv) The common-mode rejection ratio (CMRR) in dB.

(3 marks)

TERBUKA

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2016/2017 COURSE NAME: ELECTRONIC PRINCIPLES PROGRAMME: 2BND/2BNF COURSE CODE: BNR20503

FIGURE Q2(c)

CONFIDENTIAL

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2016/2017 COURSE NAME: ELECTRONIC PRINCIPLES PROGRAMME: 2BND/2BNF COURSE CODE: BNR20503

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2016/2017 COURSE NAME: ELECTRONIC PRINCIPLES PROGRAMME: 2BND/2BNF COURSE CODE: BNR20503

FIGURE Q6 (b)

List of formula:

$$k = \frac{I_{D(on)}}{(V_{GS(on)} - V_{GS(th)})^2}$$

$$\mathbf{R'_s} = \mathbf{R_s} ||\mathbf{R_1}|| \mathbf{R_2}$$

$$R_s' = R_s ||R_1||R_2$$

$$g_m = 2k \left(V_{GS_Q} - V_{GS(th)} \right)$$

$$R_e = R_E \parallel (\frac{R_s'}{\beta} + r_e)$$

$$g_m = \frac{2I_{DSS}}{|V_P|} \left(1 - \frac{V_{GS}}{V_P} \right)$$