

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2015/2016**

COURSE NAME

: SOLID MECHANICS

COURSE CODE

: BNJ 20903

PROGRAMME

: 2 BNH/BNK

EXAMINATION DATE : DECEMBER 2015 / JANUARY 2016

DURATION

: 3 HOURS

INSTRUCTION

ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF EIGHT (8) PAGES

CONFIDENTIAL

Q1	(a)	NE (1) example of:			
		(i)	Statically determinate beams	(2 marks)	
		(ii)	Statically indeterminate beams	(2 marks)	
	(b)		RE Q1(b) shows a beam AB with loaded and supported and is saiding CB. Show all the significant values:	d to have an	
		(i)	Determine the support reaction	(4 marks)	
		(ii)	Sketch the shear diagram	(5 marks)	
		(iii)	Sketch the moment diagram	(5 marks)	
		(iv)	Determine the maximum normal stress on a transverse section at C	(2 marks)	
Q2	Rod AB consists of two cylindrical portions AC and BC, each with a cross-sectional area of 1750 mm ² . Portion AC is made of a mild steel with E = 200 GPa and σ_y = 250 MPa, and portion BC is made of a high-strength steel with E = 200 GPa and σ_y = 345 MPa. A load P is applied at C as shown in FIGURE Q2 . If P is gradually increased from zero until the deflection of point C reaches a maximum value δ_m = 0.3 mm and then decreased back to zero. Determine:				
	(a)	The m	aximum value of P	(8 marks)	
	(b)	The m	aximum stress in each portion of the rod	(6 marks)	
	(c)	The po	ermanent deflection of C after the rod removed	(6 marks)	

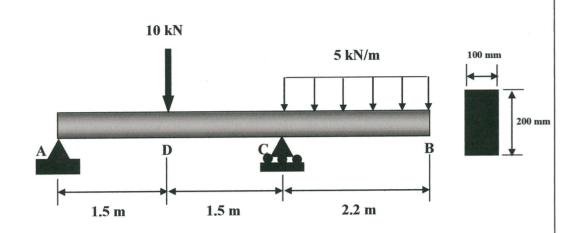
Q3	FIGURE Q3 shows a 4-kN.m torque T is applied at end A of the composite shaft. Knowin that the modulus of rigidity is 77 GPa for steel and 27 GPa for aluminum. Determine:						
	(a)	The m	naximum shearing stress in the steel core	(7 marks)			
	(b)	The maximum shearing stress in the aluminum jacket					
	(c)	The a	ngle of twist at A	(6 marks)			
Q4	(a)	An element of material subjected to plane strain as shown in FIGURE Q4(a) strains as follows: $\epsilon_x = 220 \times 10^{-6}$, $\epsilon_y = 480 \times 10^{-6}$ and $\gamma_{xy} = 180 \times 10^{-6}$. Calculate:					
		(i)	the strains for an element oriented at angle $\theta = 50^{\circ}$	(3 marks)			
		(ii)	show these strains on a sketch of properly oriented element.	(3 marks)			
	(b)		mine the equivalent state of stress on an element at the same point) which represents	t in FIGURE			
		(i)	the Principal Stresses	(3 marks)			
		(ii)	the Orientation of Principle Plane	(3 marks)			
		(iii)	the Maximum In-Plane Shear Stress	(3 marks)			
		(iv)	Orientation of the Plane of Maximum In-Plane Shear Stress	(3 marks)			
		(v)	Average Normal Stress	(2 marks)			

TERMALLISTE BY DOWN OF CONFIDENTIAL

Q5	(a)	FIGURE Q5(a) show the wide-flange section is reinforced with two wooden board. If this composite beam is subjected to an internal moment of $M = 100 \text{ kN.m.}$ Take $E_w = 10 \text{ GPa}$ and $E_{st} = 200 \text{ GPa}$. Determine					
		(i)	the moment of inertia of the transformed section	(4 marks)			
		(ii)	the maximum bending stress of the steel and the wood	(4 marks)			
	(b)	100 n that c	FIGURE Q5(b) show the wood column has a square cross section with dimensional 100 mm by 100 mm. It is fixed at its based and free at its top. Determine the load I that can be applied to the edge of the column without causing the column to fail either				
		by buckling or by yielding. Given $E_w = 12$ GPa and $\sigma_y = 55$ MPa		(12 marks)			
Q6	FIGURE Q6 show the cantilevered aluminum alloy rectangular beam with $G = 26$ G $E = 68.9$ GPa. Determine:						
	(a)	the In	nternal loadings	(4 marks)			
	(b)	the S	hearing Strain Energy	(4 marks)			
	(c)	the B	ending Strain Energy	(4 marks)			
	(d)	exter	nal work or external force	(4 marks)			
	(e)	the C	Conservation of Energy	(4 marks)			

-END OF QUESTION-

CONTRACTOR OF THE PROPERTY OF THE STATE OF T


SEMESTER / SESSION : SEM I / 2015/2016

PROGRAMME : 2 BNH / 2 BNK

COURSE

: SOLID MECHANICS

COURSE CODE : BNJ 20903

FIGURE Q1(b)

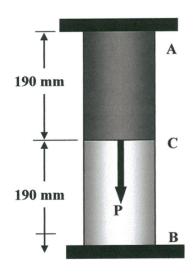
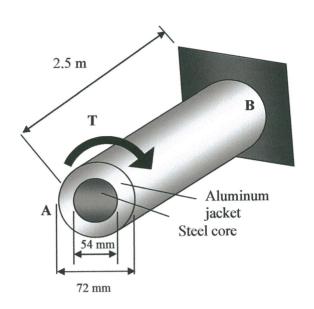


FIGURE Q2


EMESTER / SESSION : SEM I / 2015/2016

PROGRAMME : 2 BNH / 2 BNK

COURSE

: SOLID MECHANICS

COURSE CODE : BNJ 20903

FIGURE Q3

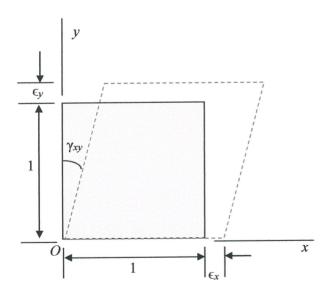
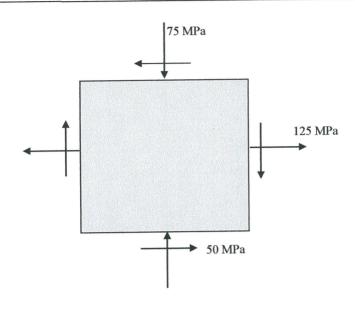
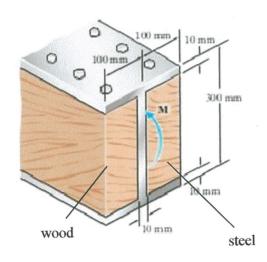


FIGURE Q4(a)


DR NORAHI SINTI MARSI Pensyaleh

SEMESTER / SESSION : SEM I / 2015/2016 **COURSE**

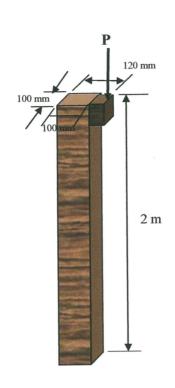

: SOLID MECHANICS

PROGRAMME : 2 BNH / 2 BNK

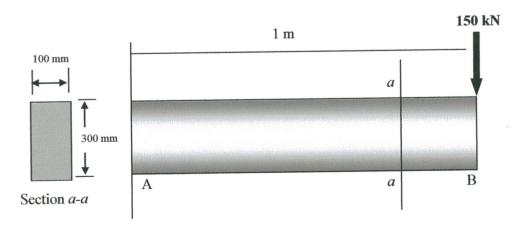
COURSE CODE : BNJ 20903

FIGURE Q4(b)

FIGURE Q5(a)


DIR NOPARI BINTI MARSH Pensioned Line ment for make the many

SEMESTER / SESSION : SEM I / 2015/2016


COURSE

: SOLID MECHANICS

PROGRAMME : 2 BNH / 2 BNK COURSE CODE : BNJ 20903

FIGURE Q5(b)

FIGURE Q6