

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2015/2016**

COURSE NAME

: POWER ELECTRONIC

CONVERTERS

COURSE CODE

: BNR 33603

PROGRAMME

: 3 BNE

EXAMINATION DATE : DECEMBER 2015 / JANUARY 2015

DURATION

: 3 HOURS

INSTRUCTION

ANSWER FOUR (4) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF NINE (9) PAGES

Q1	(a)	State THREE (3) advantages of power diodes.	
	. ,		marks)
	(b)	The thyristors can be subdivided into different types. Justify minimum FO types of thyristor.	UR (4)
		(4	marks)
	(c)	Explain the differences between power electronic switches and mechanical swi	itches.
		(4	marks)
	(d)	There are THREE (3) methods of switching-off the silicon controlled rectified Justify all of the methods.	er, SCR.
		(3 :	marks)
	(e)	The RC network across the transistor is known as a snubber circuit. electronics experts, design a static and dynamic equalisation circuit for connection of a SCR with snubber circuit.	
		(11	marks)
Q2	(a)	The transistor is a current-driven device. Draw a structure and symbol of b junction transistor (BJT) with detail labelling diagram.	oipolar
		(41	marks)
	(b)	Based on the power transistor application, sketch and explain the purp Darlington pair transistor.	
		(5	marks)
	(c)	Describe briefly about an Insulated Gate Bipolar Transistor (IGBT) and the opprinciples.	perating
		(8	marks)

(d) As an experienced technologist in power electronics, design a power efficient of electrical isolation driver circuit for the case of a power BJT half-bridge converter.

(8 marks)

Q3 (a) The battery voltage in **FIGURE Q3(a)** is E = 12 V and its capacity is 100 Wh. The average charging current should be $I_{dc} = 5$ A. The primary input voltage is $V_p = 120$ V, 60 Hz, and the transformer has a turn ratio of n = 2:1.

Calculate:

- (i) Conduction angle, δ of the diode.
- (ii) Current-limiting resistance, *R*.
- (iii) Power rating, P_R of R.
- (iv) Charging time, h_0 in hours.
- (v) Rectifier efficiency, η .
- (vi) Peak inverse voltage, PIV of the diode.

(13 marks)

(b) A three-phase bridge rectifier of **FIGURE Q3(b)**, has a purely resistive load of R.

Determine:

- (i) Efficiency, η .
- (ii) Form factor (FF).
- (iii) Ripple factor (RF).
- (iv) Transformer utilization factor (TUF).
- (v) Peak inverse (or reverse) voltage (PIV) of each diode.

(12 marks)

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2015/2016

PROGRAMME

COURSE NAME

: POWER ELECTRONIC CONVERTERS

COURSE CODE : BNR 33603

FIGURE Q3(a)

FIGURE Q3(b)

Q4	(a)	Draw a block diagram of an inverter with proper notation.
		(2 marks)
	(b)	Show the block diagram of voltage source inverter and current source inverter.
		(5 marks)
	(c)	The single-phase half-bridge inverter has a resistive load of $R = 2.4 \Omega$ and the DC input voltage is 48V.
		Find:
		 (i) Efficiency, η. (ii) Form factor (FF). (iii) Ripple factor (RF). (iv) Transformer utilization factor (TUF). (v) Peak inverse (or reverse) voltage (PIV) of each diode.
		(8 marks)
		(O Marks)
	(d)	The full-bridge inverter with DC input voltage of 100V, load resistor and inductor of 10Ω and 25mH respectively are operated at 60 Hz frequency.
		Compute:
		 (i) Amplitude of the Fourier series terms for the square-wave load voltage. (ii) Amplitude of the Fourier series terms for load current. (iii) Power absorbed by the load.
		(iv) Total harmonic distortion (THD) of the load voltage and load current for square-wave inverter.
		(10 marks)
Q5	(a)	Describe about DC-DC converter with suitable definition and application.
		(3 marks)

(b) The buck DC-DC converter of **FIGURE Q5(b)**, has the following parameters:

$$\begin{array}{lll} V_s & = 50V; \\ D & = 0.4; \\ L & = 400 \mu H; \\ C & = 100 \mu F; \\ R & = 20 \Omega; \\ f & = 20 k Hz. \end{array}$$

Assuming ideal components, calculate:

- (i) Output voltage, V_o .
- (ii) Maximum and minimum inductor current.
- (iii) Output voltage ripple.

(10 marks)

(c) The Buck-Boost circuit of **FIGURE Q5(c)**, has the following parameters:

$$Vs$$
 = 24V;
D = 0.4;
L = 100μH;
C = 400μF;
R = 5Ω;
f = 20kHz.

Determine:

- (i) Output voltage, V₀.
- (ii) Inductor current.
- (iii) Output voltage ripple.

(12 marks)

Q6 (a) State THREE (3) major applications of AC voltage controllers.

(3 marks)

(b) Discuss briefly about AC-AC controller based on **FIGURE Q6(b)**.

(4 marks)

(c) A single phase 120V AC source control power to a 5Ω resistive load using integral cycle control.

Determine:

- (i) Average value of output current
- (ii) Maximum switch current
- (iii) Maximum power produced
- (iv) Duty cycle and the value of Ton to produce 1kW power
- (v) Power factor for part (iv)

(6 marks)

(d) A 120V source control power to a 5 Ω resistive load using a phase control switch. If the load power required is 1 kW.

Calculate:

- (i) Maximum load current.
- (ii) RMS value of load current.
- (iii) Delay angle α.
- (iv) RMS value of switch current if the switch is triac.
- (v) Average current in each of the two SCRs.
- (vi) Peak reverse voltage rating of the switch.
- (vii) Power factor.

(12 marks)

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2015/2016

PROGRAMME : 3 BNE

COURSE NAME

: POWER ELECTRONIC CONVERTERS COURSE CODE : BNR 33603

FIGURE Q5(b)

FIGURE Q5(c)

FINAL EXAMINATION

SEMESTER / SESSION : SEM I / 2015/2016

PROGRAMME : 3 BNE

COURSE NAME

: POWER ELECTRONIC CONVERTERS COURSE CODE : BNR 33603

FIGURE Q6(b)