

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION **SEMESTER I SESSION 2015/2016**

COURSE NAME

INTRODUCTION TO CHEMICAL

ENGINEERING TECHNOLOGY

COURSE CODE : BNQ 10103

PROGRAMME

1 BNN :

:

TEST DATE

DECEMBER 2015/ JANUARY 2016

DURATION

2 HOURS :

INSTRUCTION : ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF FOUR (4) PAGES

CONFIDENTIAL

BNO 10103

Q1	"Chemical engineer technologist" may be called "universal engineers" because their scientific
	and technical mastery is so extensive.

(a) Describe the term *chemical engineering technology*.

(3 marks)

(b) Demonstrate the jobs opportunity for chemical engineering technologist.

(5 marks)

(c) Assess FOUR (4) importance of units and conversions.

(4 marks)

(d) Show **THREE** (3) examples of derived dimension.

(3 marks)

(e) Analyze which of these equations are dimensionally homogenous:

i.
$$x(m) = x_0(m) + 0.304(m/ft)v(ft/s)t(s) - 5m^2 + 0.5a(m/s^2)[t(s)]^2$$

ii. $P(kg/ms^2) = 10135(Pa/atm) 1(kg/ms^2/Pa)P_o(atm) + p(kg/m^3)v(m/s)$

(4 marks)

(f) Define and differentiate empirical formula and molecular formula. Provide an example for each formula.

(6 marks)

Q2 (a) Calculate the mass of zinc in a 50.00 g sample of zinc nitrate, Zn(NO₃).

(3 marks)

(b) 0.039 mol of calcium carbonate (CaCO₃) is required in an experiment. Calculate mass of CaCO₃ needs to be weighed out.

(3 marks)

(c) A chemist needs 58.75 grams of urea, calculate how many grams of ammonia are needed to produce this amount?

 $2NH_3(g)+CO_2(g) \rightarrow (NH_2)_2CO(aq)+H_2O(1)$

(3 marks)

(d) List the law of conservation of mass in material balances.

(3 marks)

(e) List the general balance equation of material balances.

(2 marks)

(f) **Figure Q2** describes a distillation column problem for a mixture containing Y and Z. Assess and fined all flows and compositions.

(11 marks)

Q3	Process flow sheets are compact and precise diagrams that present a large amount of technical
	information about chemical processes.

(a) Differentiate **THREE** (3) major types of chemical process flow sheets.

(6 marks)

(b) Differentiate between batch, semi-batch and continuous process.

(6 marks)

(c) Describe the term *Biotechnology*

(2 marks)

- (d) Describe the applications of biotechnology in the following areas:
 - i. Agricultural industry
 - ii. Bioprosessing

(6 marks)

(e) Explain the example of bioproduct developments & productions

(5 marks)

- Q4 Safety or loss prevention is the prevention of accidents through the use of appropriate technologies to identify the hazard of a chemical plant and eliminate them before an accident occurs.
 - (a) Identify **FOUR** (4) objectives of industrial safety and health.

(4 marks)

(b) Sketch **THREE** (3) symbols indicating different classes of hazardous substances.

(6 marks)

- (c) Accident and loss statistic are important measures of the effectiveness of safety programs.
 - (i) Describe **TWO** (2) methods of a safety measurement.

(4 marks)

(ii) A process has reported FAR of 3. If an employee works standard 8 hr shift 300 days per year, calculate the deaths per person per year.

(2 marks)

(iii) Demonstrate TWO (2) effects of prolong chemical exposure.

(4 marks)

(d) The dose-response curve describes the relationship between degree of exposure to a chemical (dose) and the magnitude of the effect (response) in the exposed organism. Illustrate and interpret the dose-response curve.

(5 marks)

END OF QUESTION -

COURSE NAME

FIGURE Q2