

## **UNIVERSITI TUN HUSSEIN ONN MALAYSIA**

## FINAL EXAMINATION SEMESTER I SESSION 2010/2011

COURSE NAME

: BASIC ELECTRIC AND ELECTRONICS

COURSE CODE : DKE 3273

PROGRAMME : 3 DDT

EXAMINATION DATE : NOVEMBER/DECEMBER 2010

DURATION

INSTRUCTIONS

: ANSWER FIVE (5) QUESTIONS ONLY

THIS QUESTION PAPER CONSISTS OF TEN (10) PAGES

: 3 HOURS

Q1 Refer to Figure Q1, show all the calculation to find the value for;

۰,

Q2

,

| a) | Total resistance R <sub>T</sub>                                                                                                                                               |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (4 marks)                                                                                                                                                                     |
| b) | The voltage drop across resistance $R_2$ (V <sub>R2</sub> ), resistance $R_3$ (V <sub>R3</sub> ), resistance $R_4$ (V <sub>R4</sub> ) and resistance $R_6$ (V <sub>R6</sub> ) |
|    | (8 marks)                                                                                                                                                                     |
| c) | The current flow through resistance $R_2$ ( $I_{R2}$ ), resistance $R_3$ ( $I_{R3}$ ), resistance $R_4$ ( $I_{R4}$ ) and resistance $R_6$ ( $I_{R6}$ )                        |
|    | (8 marks)                                                                                                                                                                     |
| a) | An electromagnet produces a magnetic flux of $900\mu$ Wb. Determine the magnetic field lines.                                                                                 |
|    | (10 marks)                                                                                                                                                                    |
| b) | Calculate the flux density, in gauss units for a flux, $\emptyset$ , of 200µWb in a cross sectional area of 5 x 10 <sup>-4</sup> m <sup>2</sup> .                             |

(10marks)

Q3 a) Determine the amount of charge, Q, stored by a capacitor if

- i)  $C = 10\mu F$  and V = 5V
- ii) C = 680 pF and V = 200 V
- iii)  $C = 0.22 \ \mu F$  and  $V = 50 \ V$

(6 marks)

- b) Determine the voltage, V, across a capacitor if
  - i)  $Q = 2.5 \ \mu C$  and  $C = 0.01 \ \mu F$
  - ii)  $Q = 10 \text{ mC} \text{ and } C = 1000 \ \mu\text{F}$
  - iii) Q = 188 nC and  $C = 0.0047 \,\mu\text{F}$

(6 marks)

- c) Calculate the capacitance, C, of a capacitor for each set of physical characteristics listed below;
  - i)  $A = 0.1 \text{ cm}^2$ , d = 0.005 cm,  $K\epsilon = 1$
  - ii)  $A = 1 \text{ cm}^2$ ,  $d = 5 \times 10^{-6} \text{ cm}$ ,  $K\epsilon = 6$

(8 marks)

| Refe  | to Figure Q4, assume a charging current of 2.4 mA flows for 1 ms, de                            | termine;  |
|-------|-------------------------------------------------------------------------------------------------|-----------|
| a)    | Total equivalent capacitance, C <sub>EQ</sub>                                                   |           |
| b)    | The charge stored each capacitor $C_1$ , $(Q_{C1})$ , $C_2(Q_{C2})$ and $C_3(Q_{C3})$           | (4 marks) |
| c)    | The voltage across each capacitor $C_1$ ( $V_{C1}$ ), $C_2$ ( $V_{C2}$ ) and $C_3$ ( $V_{C3}$ ) | (6 marks) |
| d)    | The total charge, $O_T$ stored by the equivalent capacitor. $C_{FO}$                            | (6 marks) |
|       |                                                                                                 | (4 marks) |
| Dafar |                                                                                                 |           |

## Q5 Refer to Figure Q5, calculate;

ð

Q4

.

| a)                             | The secondary voltage, $V_S$        |           |  |
|--------------------------------|-------------------------------------|-----------|--|
| b)                             | The secondary current, Is           | (4 marks) |  |
| c)                             | The secondary power, P <sub>S</sub> | (4 marks) |  |
| d)                             | The primary power, P <sub>P</sub>   | (4 marks) |  |
| e)                             | The primary current, I <sub>P</sub> | (4 marks) |  |
|                                |                                     | (4 marks) |  |
| Refer to Figure Q6, determine; |                                     |           |  |

| Q6 | Refer to | Figure | Q6,                  | determine   |
|----|----------|--------|----------------------|-------------|
| ×  |          | ~ -B   | $\times \cdot \cdot$ | 40001111110 |

| a) | The total equivalent resistance, R <sub>EQ</sub>                         |           |
|----|--------------------------------------------------------------------------|-----------|
| b) | The branch currents, $I_1$ and $I_2$                                     | (4 marks) |
| c) | The total current, $I_T$                                                 | (4 marks) |
| d) | The power dissipated at each resistors P <sub>1</sub> and P <sub>2</sub> | (4 marks) |
| e) | The total power supplied by the source $P_{\rm m}$                       | (4 marks) |
| ,  | to an power supplied by the source, I T                                  | (4 marks) |

;

,**\*** 

| Q7 | (a)                                                                                                                      | Figur            | e Q7(a) shows a transistor biasing circuit;                                                                                                    |             |
|----|--------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    |                                                                                                                          | i)               | calculate collector saturation current (I <sub>C(sat)</sub> )                                                                                  |             |
|    |                                                                                                                          | ii)              | calculate collector-emitter off voltage (V <sub>CE (off)</sub> )                                                                               | (1 mark)    |
|    |                                                                                                                          | iii)             | calculate current at the $\Omega$ -point (I <sub>ac</sub> )                                                                                    | (1 mark)    |
|    |                                                                                                                          | )                | calculate current at the Q-point (ICQ)                                                                                                         | (3 marks)   |
|    |                                                                                                                          | 1V)              | calculate voltage at the Q-point ( $V_{CEQ}$ )                                                                                                 | (1 mark)    |
|    |                                                                                                                          | v)               | draw the DC load line for the transistor circuit                                                                                               | (4 marks)   |
|    | (b) Figure Q7(b) shows a n-channel JFET circuit. What is the provide drain current (Ip) of approximately one-half Ipper? |                  | e Q7(b) shows a n-channel JFET circuit. What is the value of R le drain current (I <sub>D</sub> ) of approximately one-half I <sub>DSS</sub> ? | s that will |
|    |                                                                                                                          |                  |                                                                                                                                                | (2 marks)   |
|    | (c)                                                                                                                      | Referr<br>detern | ring to Figure Q7(b), for the values of $R_s$ calculated in quest nine:                                                                        | ion Q7(b),  |
|    |                                                                                                                          | i)               | gate voltage (V <sub>G</sub> )                                                                                                                 |             |
|    |                                                                                                                          | ii)              | source voltage (V <sub>s</sub> )                                                                                                               | (2 marks)   |
|    |                                                                                                                          | iii)             | gate-source voltage (V <sub>cs</sub> )                                                                                                         | (2 marks)   |
|    |                                                                                                                          | iv)              | drain voltage (V <sub>D</sub> )                                                                                                                | (2 marks)   |

(2 marks)











**References :** 

,3

| Band<br>Color | Digit | Multiplier  | Tolerance    |
|---------------|-------|-------------|--------------|
| Black         | 0     | 1           |              |
| Brown         | 1     | 10          | ±1%          |
| Red           | 2     | 100         | ±2%          |
| Orange        | 3     | 1,000       | ±3%          |
| Yellow        | 4     | 10,000      | ±4%          |
| Green         | 5     | 100,000     |              |
| Blue          | 6     | 1,000,000   |              |
| Violet        | 7     | 10,000,000  |              |
| Gray          | 8     | 100,000,000 |              |
| White         | 9     |             |              |
| Gold          |       | 0.1         | ±5%          |
| Silver        |       | 0.01        | ±10%         |
| None          |       |             | <b>±20</b> % |