

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2013/2014**

COURSE NAME

: FUNDAMENTALS OF PLANT

ENGINEERING TECHNOLOGY

COURSE CODE

: BNL 20102

PROGRAMME

: 2 BNL

EXAMINATION DATE : DECEMBER 2013/JANUARY 2014

DURATION

: 2 HOURS

INSTRUCTION

ANSWER ALL QUESTIONS

THIS QUESTION PAPER CONSISTS OF SIX (6) PAGES

CONFIDENTIAL

Q1 A feed stream F consists of for different components A, B, C and D is fed to the separator for purification purpose, as shown in Figure Q1.

Data given are as follows:

F = 100 kg/min

$$X_{CF} = 0.1$$
 $X_{AW} = 0.5$ $X_{AD} = 0.5$ $X_{BD} = 0.1$ $X_{BW} = 0.15$ $X_{DW} = 0.19$

(a) Apply the mass balance of the streams and the material balance of each component.

(8 marks)

- (b) Determine the mass fraction X_{AF} and X_{BF} in the stream F (6 marks)
- (c) Calculate the remaining mass fraction X_{CW} and X_{CD} . (6 marks)
- (d) After one hour operation, what is the value of the product stream F_D and the byproduct F_W (5 marks)
- Q2 (a) By using sketches, show three common types of flows occur in a shell tube heat exchanger.

 (9 marks)
 - (b) State three parameters to increase the heat transfer rate between two different media. (7 marks)
 - (c) Match the valve type with its description in Table Q2.

(9 marks)

Table Q2

Valve Type	Description				
Ball	a. Designed to open if the pressure of a gas exceeds a preset threshold				
Butterfly	b. Uses a disc-shaped flow control element to increase or decrease flow				
Check	c. Uses a hollow-out plug to increase or decrease flow				
Diaphram	d. Use a rubber-type diaphram to control flow				
Gate	e. Uses a metal gate to block the flow of fluid				
Globe	f. Uses a hollow-out ball to increase or decrease flow				
Plug	g. Designed to open if the pressure of a liquid exceeds a preset level				
Relief	h. Uses a spherical or globe-shaped plug to block fluid flow				
Safety	i. Uses to prevent accidental backflow				

Q3 (a) Describe the water circulation in a water tube boiler by using a sketch.

(10 marks)

(b) State four common water treatment methods applied in a boiler.

(8 marks)

(c) Differentiate between deaeration and reverse osmosis process used in a boiler feedwater.

(7 marks)

Q4 An ideal binary mixture comprising the pure components A and B has the saturated temperatures and the associated pressures listed in Table Q4. The total pressure of the mixture is 101.32 kPa.

Table Q4

T[°C]	А	В	
I[C]	P _{vap} [kPa]	P _{vap} [kPa]	
80.10	101.32		
85.00	116.90	46.00	
90.00	135.50	54.00	
100.00	179.20	74.30	
105.00	204.20	86.00	
110.60	240.00	101.32	

(a) Which component is more volatile compound. Reason your answer.

(3 marks)

(b) Correlate the mole fraction of the component A in the liquid phase (x_A) and vapor phases (y_A) as a function of the pressures.

(7 marks)

(c) Determine the mole fractions x_A and y_A for each temperature	(c)	Determine	the mole	fractions x _A	and y _A f	or each ter	nperature.
---	-----	-----------	----------	--------------------------	----------------------	-------------	------------

(7 marks)

(d) Plot your answer in item (c) in a graph of T-xy. Use 15 $^{\circ}$ C for the interval in the vertical axe and 0.1 for the interval in xy axe.

(8 marks)

- END OF QUESTION -

FINAL EXAMINATION

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME : FUNDAM

: FUNDAMENTALS TO PLANT ENGINEERING TECHNOLOGY

PROGRAMME: 2 BNL COURSE CODE: BNL 20102

VnNAPOLGAM Pensyarin Fakulti Teknologi Kejbiotacian Universiti Tur. Husscin Qnii Maleysia