

UNIVERSITI TUN HUSSEIN ONN MALAYSIA

FINAL EXAMINATION SEMESTER I **SESSION 2013/2014**

COURSE NAME

: ELECTRICAL PRINCIPLES I

COURSE CODE : BNR 10203

PROGRAMME : 1 BND/ 1 BNF

EXAMINATION DATE : DECEMBER 2013/JANUARY 2014

DURATION

: 3 HOURS

INSTRUCTION

: ANSWER FIVE (5) QUESTIONS

ONLY

THIS QUESTION PAPER CONSISTS OF TWENTY ONE (21) PAGES

CONFIDENTIAL

Define and calculate the following questions:

Q1

(a)

	(i)	What is the prefix micro stands for?	
		(1 mark)	
	(ii)	Calculate the current flows when a charge of 2 C flowing past a given point each second.	
		(1 mark)	
,	(iii)	Find the voltage across a 1.1kW toaster that produces a current of 10 A?	
		(2 marks)	
	(iv)	A current of 3.2 A flows through a conductor. Calculate how much charge passes through any cross-section of the conductor in 20 s.	
		(2 marks)	
(b)	(b) Calculate the amounts coulombs for the following amounts of electrons		
	(i)	6.482×10^{17} (1 mark)	
	(ii)	1.24×10^{18} (1 mark)	
((iii)	2.46×10^{19} (1 mark)	
((iv)	1.628×10^{20} (1 mark)	
	A constant current of 3 A for 4 hours is required to charge an automotive battery. If the terminal voltage is $10 + t/2$ V, where t is in hours,		
	(i)	Find the amount of charge is transported as a result of the charging?	

(2 marks)

BNR 10203

		(ii) Calculate the amount of energy is expended? (2 marks)			
		(iii) how much does the charging cost? Assume electricity costs 9 cents/kWh. (2 marks)			
	(d)	A battery may be rated in ampere-hours (Ah). A lead-acid battery is rate at 160 Ah.			
		(i) What is the maximum current it can supply for 40 h? (2 marks)			
		(ii) How many days will it last if it is discharged at 1 mA? (2 marks)			
Q2	(a)	Determine i_1 and i_2 in the circuit of Figure Q2(a). (3 marks)			
	(b)	The lightbulb in Figure Q2(b) is rated 120 V, 0.75 A. Calculate to make the lightbulb operate at the rated conditions. (5 marks)			
	(c)	Find R_{eq} and I in the circuit of Figure Q2(c). (12 marks)			
Q3	(a)	In the circuit of Figure Q3(a), solve for I_1 , I_2 and I_3 . (10 marks)			
	(b)	By inspection, obtain the mesh-current equations for the circuit in Figure Q3(b). (10 marks)			
		(20 mans)			
Q4	(a)	Determine v_x in the circuit of Figure 4(a) using source transformation. (5 marks)			
	(b)	For the circuit in Figure Q4(b), find the Thevenin and Norton equivalent circuits at terminals <i>a-b</i> . (7 marks)			

(b) Determine the maximum power that can be delivered to the variable resistor R. In the circuit of Figure Q4(c). (8 marks) Q5 Find the equivalent capacitance between terminals a and b in the circuit of (a) Figure Q5(a). All capacitances are in μ F. (4 marks) (b) Determine L_{eq} that may be used to represent the inductive network of Figure Q5(b) at the terminals. (8 marks) (c) (i) An op amp integrator has R=100 k Ω and C=0.01 μ F. If the input voltage is v_i =10sin50t mV, obtain the output voltage. (4 marks) (ii) A 10 V dc voltage is applied to an integrator with R=50 k Ω , C=100 μ F at t=0. How long will it take for the op amp to saturate if the saturation voltages are +12 V and -12 V? Assume that the initial capacitor voltage was zero. (4 marks) **Q6** (a) The switch in Figure Q6(a) has been in position A for a long time. Assume the switch moves instantaneously from A to B at t = 0. Find v for t > 0. (3 marks) (b) For the circuit in Figure Q6(b), find i_0 for t > 0. (5 marks) (c) Express the signals in Figure Q6(c) in terms of signal functions. (6 marks)

- END OF QUESTION -

Determine the inductor current i(t) for both t < 0 and t > 0 for each of the

(6 marks)

(d)

circuits in Figure Q6(d).

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/1 BNF COURSE CODE: BNR 10203

FIGURE Q2(a)

SEMESTER/SESSION: SEM I/2013/2014

COLUMN TEN SENS 1/2013/2014

PROGRAMME: 1 BND/1 BNF

COURSE NAME : ELEC

: ELECTRICAL PRINCIPLES I

COURSE CODE: BNR 10203

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/1 BNF COURSE CODE: BNR 10203

FIGURE Q3(a)

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME : ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/1 BNF COURSE CODE: BNR 10203

FIGURE Q4(a)

FIGURE Q4(b)

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME : ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/1 BNF COURSE CODE: BNR 10203

FIGURE Q4(c)

FIGURE Q5(a)

SEMESTER/SESSION : SEM I/2013/2014 PROGRAMME : 1 BND/ 1 BNF COURSE NAME : ELECTRICAL PRINCIPLES I COURSE CODE : BNR 10203

FIGURE Q5(b)

FIGURE Q6(a)

10

SEMESTER/SESSION: SEM I/2013/2014 : ELECTRICAL PRINCIPLES I

COURSE NAME

PROGRAMME: 1 BND/1 BNF COURSE CODE: BNR 10203

FIGURE Q6(b)

FIGURE Q6(c)

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/ 1 BNF COURSE CODE: BNR 10203

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME : ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/1 BNF COURSE CODE: BNR 10203

FORMULAS

The voltage division principle for two resistors in series is

$$v_1 = \frac{R_1}{R_1 + R_2} v$$

$$v_2 = \frac{R_2}{R_1 + R_2} v$$

The current division principle for two resistors in parallel is

$$i_1 = \frac{R_2}{R_1 + R_2}i$$

$$i_2 = \frac{R_1}{R_1 + R_2} i$$

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/1 BNF COURSE CODE: BNR 10203

Delta to Wye-Conversion

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$$

$$R_2 = \frac{R_c R_a}{R_a + R_b + R_c}$$

$$R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$$

Wye to Delta Conversion

$$R_a = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}$$

$$R_b = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}$$

$$R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}$$

The number of branches b, the number of nodes n, and the number of independent loops l in a network are related as

$$b = l + n - 1$$

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/ 1 BNF COURSE CODE: BNR 10203

The power delivered to the load is:

$$P = i^2 R_L = \left(\frac{V_{Th}}{R_{Th} + R_L}\right)^2 R_L$$

For maximum power dissipated in R_L , P_{max} , for a given R_{TH} , and V_{TH} ,

$$R_L = R_{TH} \implies P_{\text{max}} = \frac{V_{Th}^2}{4R_L}$$

CAPACITORS

The current-voltage relationship of capacitor according to above convention is

$$i = C \frac{d v}{d t}$$

$$v = \frac{1}{C} \int_{t_0}^{t} i \, dt + v(t_0)$$

The energy, w, stored in the capacitor is

$$w = \frac{1}{2} C v^2$$

SEMESTER/SESSION: SEM I/2013/2014

: ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/1 BNF COURSE CODE: BNR 10203

INDUCTORS

COURSE NAME

The current-voltage relationship of an inductor:

$$i = \frac{1}{L} \int_{t_0}^t v(t) dt + i(t_0)$$

The energy, w, stored by an inductor:

$$w = \frac{1}{2} L i^2$$

Current and voltage relationship for R, L, C

Circuit element	Units	Voltage	Current	Power
J q				
	ohms (Ω)	v = Ri (Ohm's law)	$i = \frac{v}{R}$	$p = vi = i^2 R$
Resistance	+ 5			
Inductance	henries (H)	$v = L \frac{di}{dt}$	$i = \frac{1}{L} \int v dt + k_1$	$p = vi = Li \frac{di}{dt}$
	farads (F)	$v = \frac{1}{C} \int i dt + k_2$	$i = C\frac{dv}{dt}$	$p = vi = Cv \frac{dv}{dt}$
Capacitance	* *** *** ***		*	

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/ 1 BNF COURSE CODE: BNR 10203

Important characteristics of the basic elements.

Relation	Resistor (R)	Capacitor (C)	Inductor (L)
v-i:	v = iR	$(t_o)^{t_o}$	$v = L \frac{di}{dt}$
i-v:	$i = \frac{v}{R}$	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_o}^{t} v dt + i(t_o)$
p or w	$p = i^2 R = \frac{v^2}{R}$	$w = \frac{1}{2}Cv^2$	$w = \frac{1}{2}Li^2$
Series	$R_{eq} = R_1 + R_2$	$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{eq} = L_1 + L_2$
Parallel	$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{eq} = C_1 + C_2$	$L_{eq} = \frac{L_1 L_2}{L_1 + L_2}$
At dc:	Same	Open circuit	Short circuit
Circuit variable that cannot change abruptly:	Not applicable	ν	i

An op amp integrator

An op amp differentiator

$$v_o = -RC \frac{dv_i}{dt}$$

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/ 1 BNF COURSE CODE: BNR 10203

$$KCL => i_R + i_C = 0 \rightarrow \frac{v}{R} + C\frac{dv}{dt} = 0$$

A RC source-free circuit

$$v(t) = V_0 e^{-t/\tau} \implies \tau = R C$$

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME : ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/ 1 BNF COURSE CODE: BNR 10203

A first-order RL circuit consists of a inductor L (or its equivalent) and a resistor (or its equivalent

$$v_L + v_R = 0$$

A RL source-free circuit

$$i(t) = I_0 e^{-t/\tau}$$

where
$$\tau = \frac{L}{R}$$

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/1 BNF COURSE CODE: BNR 10203

The unit step function u(t) is 0 for negative values of t and 1 for positive values of t.

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

$$u(t-t_o) = \begin{cases} 0, \\ 1, \end{cases}$$

$$t < t_o$$
 $t > t$

$$u(t+t_o) = \begin{cases} 0, \\ 1, \end{cases}$$

$$t < -t_o$$

$$t > -t_o$$

Represent an abrupt change for:

1. voltage source.

2. for current source:

SEMESTER/SESSION: SEM I/2013/2014

COURSE NAME

: ELECTRICAL PRINCIPLES I

PROGRAMME: 1 BND/1 BNF COURSE CODE: BNR 10203

Summary of basic op amp circuits.

Op amp circuit

Name/output-input relationship

Inverting amplifier

Noninverting amplifier

$$v_o = \left(1 + \frac{R_2}{R_1}\right)v_t$$

Voltage follower

$$v_o = v_t$$

Summer

$$v_o = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right)$$

Difference amplifier

$$v_o = \frac{R_2}{R_1}(v_2 - v_1)$$